COMP1531
Full-Stack - Auth

Lecture 9.1

Author(s): Hayden Smith

(Download as PDF)



http://teaching.bitflip.com.au/1531/22T2/9.1-auth.pdf

In This Lecture

« Why?

= Basic security is an important step in building good software

« What?
= Authentication
= Authorisation




Auth

It's a nickname COMP1531 gives two important concepts:
Authentication: Process of verifying the identity of a user
Authorisation: Process of determining an authenticated user's access privileges

Note: UNSW has more cybersecurity courses on these topics.




Auth

Examples:

Authentication: Checking if you have a username/password for a valid MS Teams

account

Authorisation: For your valid MS Teams account, checking if you are an admin or not




Authentication

What is the the most basic approach?

1. User registers, we store their username and password
2. When user logs in, we compare their input password to their stored password
3. If it matches, they entered the right password




cONO Ol h~ WNE

Authentication

What's wrong with this?

type Data = {

+s

users: { [emall: string]: string };

const data: Data = {

+s

users: {},

function register(email: string, pw: string) {

}

if (email in data.users) {
return false;

} else {
data.users[email] = pw;
return true;

}

function login(email: string, pw: string) {

if (email in data.users) {
if (pw === data.users[email]) {
return true;




22 }

23}
24 return false;
25 }

9.1_auth_simple.ts



http://teaching.bitflip.com.au/code/1531/22T2/env2/src/9.1_auth_simple.ts

Authentication

What's wrong with this?




Authentication

What's wrong with this?

We're storing peoples' passwords!




Authentication

What's wrong with this?
We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid
this??




Authentication

What's wrong with this?
We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid
this??

We need to & hide & the password




Authentication

What's wrong with this?
We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid
this??

We need to & hide & the password

.what does that even mean..




Hiding Information

Encryption and Hashing are both processes of taking plaintext information and
concealing it by turning it into a seemingly random string of characters.

Input Digest

Fox Cryp?grhaph'c DFCD 3454 BBEA 7883 7512
ast 696C 24D9 7009 CA99 2D17
function
Lhni r:%\t(e)xr cryp;"grhaph'c 0086 46BE FR7D CBE2 823(
jump kel ACC7 6CD1 90B1 EEGE 3AB(
the blue dog function

The red fox cryptographic
jumps ouer hash
the blue dog function

BFD8 7558 7851 4F32 DI1Cé6
76B1 7949 0DA4 AEFE 481%

The red fox cryptographic
jumps oevr hash
the blue dog function

FCD3 77FDB 5AF2 C6FF 915}
D401 COA9 T7DO9A 46AF FB45

The red fox cryptographic
jumps oer hash
the blue dog function

8ACA D682 D588 4C75 4BF4
1799 7D88 BCF8 92B9 616(

Source



https://upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Cryptographic_Hash_Function.svg/1200px-Cryptographic_Hash_Function.svg.png

Hiding Information

Encryption is reversible.
Hashing is irreversible.

Reversibility does make the hiding process finitely less secure (since a method to
"unhide" the information exists). But it provides the convenience of being able to reverse
it!

12




Hiding Information

Let's explore a hashing example together.




Hashing

Hashing is our method of irreversibly hiding information. One way to generate a hash is
tousethe crypto library. This is built-in to NodeJS so you don't need to npm
install anything.

1 import crypto from 'crypto';

2

3 function getHashOf(plaintext: string) {

4 return crypto.createHash('sha256"').update(plaintext).digest('he;
5 %}

6

7 const msg = 'BigMacSecretSauce’;

8

const hash = getHashOf(msg);

O

10 console.log(hash);
12 export { getHashOf }; // ignore this line

9.1 hash.ts

getHashOf converted BLgMacSecretSauce to
8c64be3db244091660a3b69ef548e3d43f9f945aaae78el1ff2de939cacll1l16ba



http://teaching.bitflip.com.au/code/1531/22T2/env2/src/9.1_hash.ts

There is no way to convert hash tomsg! Even if you know the entire method of how this
conversion happens, it's not reasonably possible to reverse it.

15




O~NO UL A~ WNRE

21
22
23
24
25

Hashing

How would we apply this to our authentication issue?

type Data = {
users: { [email: string]: string };

}i

const data: Data = {
users: {},

}

function register(email: string, pw: string) {
if (email in data.users) {
return false;
} else {
data.users[email] = pw;
return true;

}
3

function login(email: string, pw: string) {
if (email in data.users) {
if (pw === data.users[email]) {
return true;
¥

}

return false;

}
9.1_auth_simple.ts

16



http://teaching.bitflip.com.au/code/1531/22T2/env2/src/9.1_auth_simple.ts

Hashing

How would we apply this to our authentication issue?

5 import { getHashOf } from './9.1 hash';

15 data.users[email] = getHashOf(pw);

22 if (getHashOf(pw) === data.users[email]) {

9.1 auth_fixed.ts

17



http://teaching.bitflip.com.au/code/1531/22T2/env2/src/9.1_auth_fixed.ts

Authorisation

Authorisation is a much simpler topic. It's really just about you having appropriate logic
to decide what permissions a given authenticated user does or doesn't have.

An example is in your project: Is the user a member or an admin?

We will not explore this topic further in COMP1531.

18




Feedback

Or go to the form here.



https://docs.google.com/forms/d/e/1FAIpQLSe4_-ZBqxXV05sqbGmE17plgJ7c-54U52wnodbEYSaE4ZZMcg/viewform?usp=pp_url&entry.629327800=9.1%20Auth




