
COMP1531

📚 Full-Stack - HTTP Servers
Lecture 4.2

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/22T3/4.2-http-server.pdf

In This Lecture

Why? 🤔
Web servers are fundamental part of web-based full-stack software

What? 📰
Networks

Express Server

APIs

Crud

2

🌐 Networks
Network: A group of interconnected computers that can communicate

Internet: A global infrastructure for networking computers around the entire world

together

World Wide Web: A system of documents and resources linked together, accessible via

URLs

Network

Internet

Web

4

🌐 Networks

If you want to learn more about networking, go and study COMP3331.

5

🌐 Network Protocols
Communication over networks must have a certain "structure" so everyone can

understand.

Humans do this all the time - waving, handshakes, clapping. Standard operation

procedure that structures how we share info.

Different "structures" (protocols) are used for different types of communication.

7

🌐 Network Protocols

HTTP is an example of one of the protocols. It is the protocol of the web. The primary

protocol you use to access URLs in your web browser.

source

https://i.ytimg.com/vi/TMVVjOAw7HE/maxresdefault.jpg

8

🌐 Network Protocols
Examples

9

🕸 HTTP

HTTP: Hypertext Transfer Protocol

I.E. Protocol for sending and receiving HTML documents (nowadays much more)

Web Browsers (Client)

➡️
⬅️

Web Servers

Web browsers are applications to request and receive HTTP.

11

🍕 NodeJS Express Server

A very popular npm library exists to allow you to run your own HTTP server with NodeJS.

It's called .Express Server

13

https://expressjs.com/en/starter/hello-world.html

🍕 NodeJS Express Server

import express from 'express';

const app = express();
const port = 3000;

app.use(express.text());

app.get('/', (req, res) => {
 res.send('Hello World!');
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14

4.2_express_basic.ts

14

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🍕 NodeJS Express Server

This is us importing the express library

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7
app.get('/', (req, res) => {8
 res.send('Hello World!');9
});10
 11
app.listen(port, () => {12
 console.log(`Listening on port ${port}`);13
});14

4.2_express_basic.ts

15

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🍕 NodeJS Express Server

This creates an instance of a server, and we define the network port to run on.

A port is essentially one of the roads in and out of a computer's network.

.

const app = express();
const port = 3000;

import express from 'express';1
 2

3
4

 5
app.use(express.text());6
 7
app.get('/', (req, res) => {8
 res.send('Hello World!');9
});10
 11
app.listen(port, () => {12
 console.log(`Listening on port ${port}`);13
});14

4.2_express_basic.ts

There are often

65,000-ish

16

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts
https://twitter.com/linuxhandbook/status/1509888564833800200
https://twitter.com/linuxhandbook/status/1509888564833800200

🍕 NodeJS Express Server

This line is a quirk of express that is required in order for the data of many requests to

be interpreted.

app.use(express.text());

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5

6
 7
app.get('/', (req, res) => {8
 res.send('Hello World!');9
});10
 11
app.listen(port, () => {12
 console.log(`Listening on port ${port}`);13
});14

4.2_express_basic.ts

17

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🍕 NodeJS Express Server

This says that "when URL / is accessed, call this function". The function sends some text

to the person accessing that URL.

If we want our server to do more, we need to write lots more of these.

app.get('/', (req, res) => {
 res.send('Hello World!');
});

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7

8
9
10

 11
app.listen(port, () => {12
 console.log(`Listening on port ${port}`);13
});14

4.2_express_basic.ts

18

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🍕 NodeJS Express Server

This line actually starts the server (on a particular port). It essentially runs an infinite

loop so the program runs forever constantly waiting for new people to "access" it via a

certain URL.

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7
app.get('/', (req, res) => {8
 res.send('Hello World!');9
});10
 11

12
13
14

4.2_express_basic.ts

19

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🍕 NodeJS Express Server

This line actually starts the server (on a particular port). It essentially runs an infinite

loop so the program runs forever constantly waiting for new people to "access" it via a

certain URL.

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7
app.get('/', (req, res) => {8
 res.send('Hello World!');9
});10
 11

12
13
14

4.2_express_basic.ts

Let's take a step back to learn about what servers are used for.
19

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

🪟 API

An API (Application Programming Interface) refers to an interface exposed by a particular

piece of software.

The most common usage of "API" is for Web APIs, which refer to a "contract" that a

particular service provides. The interface of the service acts as a black box and indicates

that for particular endpoints, and given particular input, the client can expect to receive

particular output.

21

🪟 Web API

22

🪟 RESTful API

A RESTful API is an application program interface (API) that uses HTTP requests to GET,

PUT, POST and DELETE data. These 4 methods describe the "nature" of different API

requests.

GET, PUT, POST, DELETE are HTTP Methods. They refer to CRUD operations.

Method Operation

POST Create

GET Read

PUT Update

DELETE Delete

23

🪟 RESTful API

Different CRUD properties require different approaches for input. All output are the

same.

import express from 'express';

const app = express();
const port = 3001;

app.use(express.text());

app.get('/apple', (req, res) => {
 const name = req.query.name;
 res.send(JSON.stringify({
 msg: `Hi ${name}, thanks for sending apple!`,
 }));
});

// same for .put and .delete
app.post('/orange', (req, res) => {
 const body = JSON.parse(req.body);
 const name = body.name;
 res.send(JSON.stringify({
 msg: `Hi ${name}, thanks for sending orange!`,
 }));
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4.2_crud.ts
24

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud.ts

🪟 RESTful API

Different CRUD properties require different approaches for input.

For inputs:

GET|DELETE: via req.query (capture URL)

PUT|POST: via req.body (capture body)

For outputs:

All outputs should be packaged up as JSON

25

🪟 RESTful API

If we are embrace the use of JSON everywhere, we can make use of other library feature

to clean up the code.

import express from 'express';

const app = express();
const port = 3001;

app.use(express.json());

app.get('/apple', (req, res) => {
 const name = req.query.name;
 res.json({
 msg: `Hi ${name}, thanks for sending apple!`,
 });
});

// same for .put and .delete
app.post('/orange', (req, res) => {
 const name = req.body.name;
 res.json({
 msg: `Hi ${name}, thanks for sending orange!`,
 });
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

4.2_crud_json.ts
26

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud_json.ts

🪟 RESTful API

If we are embrace the use of JSON everywhere, we can make use of other library feature

to clean up the code.

app.use(express.json());

 res.json({
 msg: `Hi ${name}, thanks for sending apple!`,

 const name = req.body.name;
 res.json({

import express from 'express';1
 2
const app = express();3
const port = 3001;4
 5

6
 7
app.get('/apple', (req, res) => {8
 const name = req.query.name;9

10
11

 });12
});13
 14
// same for .put and .delete15
app.post('/orange', (req, res) => {16

17
18

 msg: `Hi ${name}, thanks for sending orange!`,19
 });20
});21
 22
app.listen(port, () => {23
 console.log(`Listening on port ${port}`);24
});25

4.2_crud_json.ts
27

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud_json.ts

🪟 RESTful API
Task

Create a web server that uses CRUD to allow you to create, update, read, and delete a

point via HTTP requests

Use a global variable to manage the state.

28

🔊 Talking To A Web Server

How can we talk to a web server as a client?

1. API client

2. Web Browser

3. An NPM library: sync-requests

30

🔊 API Client (ARC, Postman)

How to download/install ARC:

Open google chrome

Google "ARC client"

Install the addon and open it

Follow the demo in the lectures

You may need to use a tool like this in the final exam.

31

🔊 API Client (ARC, Postman)

32

🔊 Web Browser

33

🔊 Requests Library

We can use an npm package sync-requests to allow us to programatically send

RESTful API requests. npm install sync-requests.

We can send them to our previous server.

import request from 'sync-request';

const res = request(
 'GET',
 'http://localhost:3001/apple?name=Hayden'
);
console.log(JSON.parse(String(res.getBody())));

1
2
3
4
5
6
7

4.2_requests.ts

34

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.ts

🔊 Requests Library

We can use an npm package sync-requests to allow us to programatically send

RESTful API requests. npm install sync-requests.

We can send them to our previous server.

import request from 'sync-request';

const res = request(
 'GET',
 'http://localhost:3001/apple?name=Hayden'
);
console.log(JSON.parse(String(res.getBody())));

1
2
3
4
5
6
7

4.2_requests.ts

Let's look at the sync-request library to see if we can remove name=Hayden from URL.

34

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.ts

🍅 Working With jest

import request from 'sync-request';

describe('Test Apple', () => {
 test('If it returns a name string successfully', () => {
 const res = request(
 'GET',
 'http://localhost:3001/apple',
 {
 qs: {
 name: 'Hayden',
 },
 }
);
 const bodyObj = JSON.parse(String(res.getBody()));
 expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending apple!');
 });
});
describe('Test Orange', () => {
 test('If it returns a name string successfully', () => {
 const res = request(
 'POST',
 'http://localhost:3001/orange',
 {
 body: JSON.stringify({ name: 'Hayden' }),
 headers: {
 'Content-type': 'application/json',
 },
 }
);
 const bodyObj = JSON.parse(String(res.getBody()));
 expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending orange!');
 });

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

});33

4.2_requests.test.ts

36

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.test.ts

🤗 How To Wrap Into Project

In general, iteration 2 requires that you implement an HTTP server. However! Many of the

routes that exist in iteration 2 are just wrappers of your iteration 1 functions.

Therefore it should be easy to "wrap" your iteration 1 functions with an HTTP server. I.E.

Most of the "server" stuff you'll do is just routing, gathering bodies, and returning

responses, while treating your iteration 1 functions like blackboxes.

37

🎁 Optional! Making Life Easier.

Did you know we can make node auto restart if new files are compiled?

If we:

Run npm install --save-dev nodemon

Replace node with nodemon in package.tson

Then run npm run start in a separate terminal.

39

🎁 Optional! Making Life Easier.

Did you know we can make tsc auto run if source files are changed?

If we:

Add --watch flag to tsc command

Then run npm run tsc in a separate terminal.

40

👂🏼Feedback

Or go to the .form here

41

https://docs.google.com/forms/d/e/1FAIpQLSe4_-ZBqxXV05sqbGmE17plgJ7c-54U52wnodbEYSaE4ZZMcg/viewform?usp=pp_url&entry.629327800=4.2%20HTTP%20Servers

