COMP1531
= Full-Stack - HTTP Servers

Lecture 4.2

Author(s): Hayden Smith

(Download as PDF)

http://teaching.bitflip.com.au/1531/22T3/4.2-http-server.pdf

In This Lecture

. Why? &

= Web servers are fundamental part of web-based full-stack software

. What? &
= Networks
= Express Server
= APls
= Crud

£ Networks

o Network: A group of interconnected computers that can communicate

 Internet: A global infrastructure for networking computers around the entire world
together

o World Wide Web: A system of documents and resources linked together, accessible via
URLSs

Network

) Networks

If you want to learn more about networking, go and study COMP3331.

Network Protocols

e Communication over networks must have a certain "structure" so everyone can
understand.

e Humans do this all the time - waving, handshakes, clapping. Standard operation
procedure that structures how we share info.

e Different "structures" (protocols) are used for different types of communication.

Network Protocols

Astrit Krasniqi CCNA/CCNP Certified Instructor - CCNA Cyber Ops, Chapter 4: Network Protocols and Services

TCPI/IP Protocol Suite and Communication

TCP/IP Protocol Suite and Communication Process

Name Host Email File
System Config Transfer

Layer

Routing Protocols

Internet Layer

Network Access Layer

source

HTTP is an example of one of the protocols. It is the protocol of the web. The primary
protocol you use to access URLs in your web browser.

https://i.ytimg.com/vi/TMVVjOAw7HE/maxresdefault.jpg

Local sit

Queued files

Username:

Failed transfers

Successful transfers

g

Examples

Write: (no subject) - Thunderbird

y

From: | Hayden Smith <z341800

To:

Subject:

"

Paragraph w Variable Width

Appearance
Behaviour
Translation

Hayden Smith (LinkedIn)

Lecturer-in-charge COMP1531
School of Computer Science and Engineering
UNSW Sydney

) Network Protocols

Options controling session logging

Session logging

@ None Printable output

Al session output SSH packets
SH packets and raw data

Log file name

utty log Browse ..

(Log file name can contain &Y, &M, &D for date, &T for
time, and &H for host name)
What to do if the log file already exists
Aways overwrite it
Always append to the end of it
@ Ask the user every time

v Flush log file frequently

Options specfiic to SSH packet logging
v Omit known password fields

Omit session data

HTTP

HTTP: Hypertext Transfer Protocol

|.E. Protocol for sending and receiving HTML documents (nowadays much more)

Web Browsers (Client) Web Servers

Web browsers are applications to request and receive HTTP.

11

@ NodeJS Express Server

A very popular npm library exists to allow you to run your own HTTP server with NodeJS.
It's called Express Server.

13

https://expressjs.com/en/starter/hello-world.html

ONO Ol b WNERE

@ NodeJS Express Server

import express from 'express';

const app = express();
const port = 3000;

app.use(express.text());

app.get('/', (req, res) => {

res.send('Hello wWorld!"),;
3)i
app.listen(port, () => {

console.log(Listening on port ${port}’);

1))

4.2_express_basic.ts

14

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

@ NodeJS Express Server

1 import express from 'express';

4.2_express_basic.ts

This is us importing the express library

15

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

@ NodeJS Express Server

3 const app = express();
4 const port = 3000;

4.2_express_basic.ts

This creates an instance of a server, and we define the network port to run on.

A port is essentially one of the roads in and out of a computer's network. There are often
65,000-ish.

16

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts
https://twitter.com/linuxhandbook/status/1509888564833800200
https://twitter.com/linuxhandbook/status/1509888564833800200

@ NodeJS Express Server

6 app.use(express.text());

4.2_express_basic.ts

This lineis a quirk of express that is required in order for the data of many requests to
be interpreted.

17

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

@ NodeJS Express Server

8 app.get('/', (req, res) => {
9 res.send('Hello wWorld!");
10 });

4.2_express_basic.ts

This says that "when URL / is accessed, call this function". The function sends some text
to the person accessing that URL.

If we want our server to do more, we need to write lots more of these.

18

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

@ NodeJS Express Server

12 app.listen(port, () => {
13 console.log(Listening on port ${port});

14 });

4.2_express_basic.ts

This line actually starts the server (on a particular port). It essentially runs an infinite
loop so the program runs forever constantly waiting for new people to "access" it via a
certain URL.

19

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

@ NodeJS Express Server

12 app.listen(port, () => {
13 console.log(Listening on port ${port});

14 });

4.2_express_basic.ts

This line actually starts the server (on a particular port). It essentially runs an infinite
loop so the program runs forever constantly waiting for new people to "access" it via a
certain URL.

Let's take a step back to learn about what servers are used for.

19

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_express_basic.ts

AP

An API (Application Programming Interface) refers to an interface exposed by a particular
piece of software.

The most common usage of "API" is for Web APIs, which refer to a "contract" that a
particular service provides. The interface of the service acts as a black box and indicates
that for particular endpoints, and given particular input, the client can expect to receive

particular output.

21

Web API

Load Webpage (standard request)

Page loaded

Get extra data
Browser 5>

(Client)

Receive extra data

Submit form data

>
crloilaloia el e

Form submission confirmed

RESTful API

A RESTful APl is an application program interface (API) that uses HTTP requests to GET,
PUT, POST and DELETE data. These 4 methods describe the "nature" of different API

requests.

GET, PUT, POST, DELETE are HTTP Methods. They refer to CRUD operations.

Method Operation
POST Create
GET Read

PUT Update
DELETE | Delete

RESTful API

Different CRUD properties require different approaches for input. All output are the
same.

import express from 'express';

const app = express();
const port = 3001;

app.use(express.text());

co~NO Ol hWDN R

app.get('/apple', (req, res) => {

9 const name = req.query.name;

10 res.send(JSON.stringify({

11 msg: Hi ${name}, thanks for sending apple!’,
12 }3));

13 });

15 // same for .put and .delete

16 app.post('/orange', (req, res) => {

17 const body = JSON.parse(req.body);

18 const name = body.name;

19 res.send(JSON.stringify({

20 msg: "Hi ${name}, thanks for sending orange! ",
21 })):

22 });

24 app.listen(port, () => {
25 console. log(Listening on port ${port}’);

26 });

4.2 crud.ts

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud.ts

RESTful API

Different CRUD properties require different approaches for input.

e Forinputs:

= GET|DELETE: via req.query (capture URL)

= PUT|POST: via req.body (capture body)
e For outputs:

= All outputs should be packaged up as JSON

25

RESTful API

If we are embrace the use of JSON everywhere, we can make use of other library feature
to clean up the code.

import express from 'express';

const app = express();
const port = 3001,

app.use(express.json());

o~NO Ol hWNBRE

app.get('/apple', (req, res) => {
9 const name = req.query.name;
10 res.json({

11 msg: "Hi ${name}, thanks for sending apple! ",
12 });

13 });

14

15 // same for .put and .delete

16 app.post('/orange', (req, res) => {
17 const name = req.body.name;

18 res.json({

19 msg: "Hi ${name}, thanks for sending orange! ,
20 });

21 });

22

23 app.listen(port, () => {
24 console. log(Listening on port ${port}’);

25 1});

4.2_crud_json.ts

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud_json.ts

RESTful API

If we are embrace the use of JSON everywhere, we can make use of other library feature
to clean up the code.

6 app.use(express.json());

10 res.json({
11 msg: "Hi ${name}, thanks for sending apple!’,

17 const name = req.body.name;
18 res.json({

4.2_crud_json.ts

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_crud_json.ts

RESTful API

Task

Create a web server that uses CRUD to allow you to create, update, read, and delete a
point via HTTP requests

Use a global variable to manage the state.

28

& Talking To A Web Server

How can we talk to a web server as a client?

1. API client
2. Web Browser
3.An NPM library: sync-requests

&) API Client (ARC, Postman)

How to download/install ARC:

e Open google chrome
Google "ARC client"
Install the addon and open it

Follow the demo in the lectures

You may need to use a tool like this in the final exam.

31

&) API Client (ARC, Postman

= ARC Request

HTTP request Method
GET Request URL

An URL is required.

Socket
Parameters -

History
Headers Variables

Send a request and recall it from here |_D <> Toggle sourcemode <= Insert headers set

Header name Header value

ADD HEADER

A, Headers are valid Headers size: bytes

Once you made a request it will appear in this place.

Saved

Save a request and recall it from here

Use ctri+s to save a request. It will appear in this
place.

Install new ARC with new features! Selected environment: Default

&) Web Browser

@ 127.0.0.1:5000/hello X +

< C @ 127.0.0.1:5000/hello

Hello World! [| B Cons Sour Performanc Memary Application »

Hide data URLs JAll | » C iz Font Doc WS Manifest Other

41 ms 0ms i B0 ms

Mame ¥ Headers e Timing

I_ v General
Request URL: http://127.8.9.1:5688/hello
Request Method: GET
Status Code: @ 268 0K
Remote Address: 127.0.8.1:5008

Referrer Policy: no-referrer-when-downgrade

¥ Response Headers
Content-Length: 12
Content-Type: text/html; charset=utf-8
Date: Wed, 99 Oct 281% 13:26:85 GMT
Server: Werkzeug/®.16.8 Python/3.5.3
v Request Headers view source
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,1i
mage/apng,*/*;q=0.8,application/signed-exchange;v=b3
Accept-Encoding: gzip, deflate, br
Accept-Language: en-GB,en-US;q=8.%,2n;q=0.8

Cache-Control: max-age=0

&) Requests Library

We can use an npm package sync - requests to allow us to programatically send
RESTful APl requests. npm 1install sync-requests.

We can send them to our previous server.

import request from 'sync-request';

const res = request(
'GET',
'"http://localhost:3001/apple?name=Hayden’

)7

console. log(JSON.parse(String(res.getBody())));

~NOoO ok~ wdNBRE

4.2_requests.ts

34

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.ts

&) Requests Library

We can use an npm package sync - requests to allow us to programatically send
RESTful APl requests. npm 1install sync-requests.

We can send them to our previous server.

import request from 'sync-request';

const res = request(
'GET',
"http://localhost:3001/apple?name=Hayden’

)7

console. log(JSON.parse(String(res.getBody())));

~NOoO o bk~ Wb

4.2_requests.ts

Let's look at the sync-request library to see if we can remove name=Hayden from URL.

34

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.ts

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

& Working With jest

import request from 'sync-request';

describe('Test Apple', () => {
test('If it returns a name string successfully', () => {
const res = request(

'"GET',
"http://localhost:3001/apple’,
{
gs: {
name: 'Hayden',
1%
b

)
const bodyObj = JSON.parse(String(res.getBody()));
expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending apple!');

iy
1)

describe('Test Orange', () => {
test('If it returns a name string successfully', () => {
const res = request(
'"POST',
"http://localhost:3001/0orange’,
{
body: JSON.stringify({ name: 'Hayden' }),
headers: {
'"Content-type': 'application/json',
I
b
);
const bodyObj = JSON.parse(String(res.getBody()));
expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending orange!');

1),

33 1});

4.2_requests.test.ts

36

http://teaching.bitflip.com.au/code/1531/22T3/env2/src/4.2_requests.test.ts

€& How To Wrap Into Project

In general, iteration 2 requires that you implement an HTTP server. However! Many of the
routes that exist in iteration 2 are just wrappers of your iteration 1 functions.

Therefore it should be easy to "wrap" your iteration 1 functions with an HTTP server. I.E.
Most of the "server" stuff you'll do is just routing, gathering bodies, and returning
responses, while treating your iteration 1 functions like blackboxes.

37

i§) Optional! Making Life Easier.
Did you know we can make node auto restart if new files are compiled?

If we:

e Runnpm install --save-dev nodemon
e Replace node with nodemon in package.tson

Thenrun npm run start inaseparate terminal.

39

ig) Optional! Making Life Easier.
Did you know we can make tsc auto run if source files are changed?
If we:
e Add - -watch flagto tsc command

Thenrunnpm run tscinaseparate terminal.

40

® Feedback

Or go to the form here.

https://docs.google.com/forms/d/e/1FAIpQLSe4_-ZBqxXV05sqbGmE17plgJ7c-54U52wnodbEYSaE4ZZMcg/viewform?usp=pp_url&entry.629327800=4.2%20HTTP%20Servers

