
COMP1531
🌏 Projects - Package Management

Lecture 2.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/23T1/2.1-packages.pdf

In This Lecture

Why? 🤔
To utilise javascript fully, we need to understand how to install other modules that
aren't on our system
We need to know how to manage our installations on multi-user projects

What? 📰
Problems with packages
NPM and how it works
How to manage packages
Custom scripts

2

🌳 Disclaimer: Environment Change
Beginning from lecture 2.1, we will be working inside the env1 folder with the lecture
code. To "run" code from lectures slides further on you will need to ensure you have a

similar environment.

Don't stress, though! For your labs in week 3 + iteration 1 we have setup your project to
contain everything you need.

4

😳 Problems That We Face
Sometimes we might want to use a library in NodeJS, but this library wasn't built-in by

us. Someone else on the internet wrote it.

An example of this might be you googling "javascript how do I check if a date is valid" and
coming across some code. And we find this snippet that looks good... so we try it out!

import { isValid } from 'date-fns';

console.log(isValid(new Date('2021, 02, 30')));

1
2
3

5

😳 Problems That We Face
So now we turn it into a function that looks good for our purposes.

import { isValid } from 'date-fns';

function dateIsValid(year, month, day) {
 return isValid(new Date(year, month, day));
}

console.log(dateIsValid('2022', '14', '02'));

1
2
3
4
5
6
7

6

😳 Problems That We Face
So now we turn it into a function that looks good for our purposes.

import { isValid } from 'date-fns';

function dateIsValid(year, month, day) {
 return isValid(new Date(year, month, day));
}

console.log(dateIsValid('2022', '14', '02'));

1
2
3
4
5
6
7

But when we run it we get this error...

6

😳 Problems That We Face
So now we turn it into a function that looks good for our purposes.

import { isValid } from 'date-fns';

function dateIsValid(year, month, day) {
 return isValid(new Date(year, month, day));
}

console.log(dateIsValid('2022', '14', '02'));

1
2
3
4
5
6
7

But when we run it we get this error...

SyntaxError: Cannot use import statement outside a module'1

6

😳 Problems That We Face
So now we turn it into a function that looks good for our purposes.

import { isValid } from 'date-fns';

function dateIsValid(year, month, day) {
 return isValid(new Date(year, month, day));
}

console.log(dateIsValid('2022', '14', '02'));

1
2
3
4
5
6
7

But when we run it we get this error...

SyntaxError: Cannot use import statement outside a module'1

We need tools to solve this...

6

🧩 NPM: Node Package Manager
NPM (Node Package Manager) is a tool that is automatically installed alongside NodeJS
to manage dependencies/modules/libraries (all the same thing) for NodeJS (Javascript)

projects.

It's command on terminal is:

npm

8

🧩 NPM: Node Package Manager
The most common usage of NPM is to allow you to download external libraries.

The external libraries that you're able to download with NPM are found on the
.

Let's have a look for our date-fns library!

npmjs
website

9

https://www.npmjs.com/

🧩 NPM: Node Package Manager
To setup a code repository to use npm, all we need to do is run npm init (if it hasn't

already been run). It will ask you a few questions (don't stress about getting them right,
you can change them later).

Once this is done you should now see a package.json in your repository. This is
essentailly your projects NPM configuration file.

Sometimes we need to configure further. For example for 1531 reasons we added "type": "module" too.

{
 "name": "example",
 "version": "1.0.0",
 "description": "",
 "type": "module",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

1
2
3
4
5
6
7
8
9
10
11
12

2.1_package_simple.json

10

http://teaching.bitflip.com.au/code/1531/23T1/env1/src/2.1_package_simple.json

🎬 Managing Packages
We can install dependencies with

npm install [dependency]

For example:

npm install date-fns

You will see that this command automatically adds the most recent stable version of
date-fns to our package.json.

Let's inspect package.json.

Take note of the .~ and ^ symbols

12

https://stackoverflow.com/questions/22343224/whats-the-difference-between-tilde-and-caret-in-package-json

🎬 Managing Packages
Our code will now run successfully.

import { isValid } from 'date-fns';

function dateIsValid(year, month, day) {
 return isValid(new Date(year, month, day));
}

console.log(dateIsValid('2022', '14', '02'));

1
2
3
4
5
6
7

2.1_date_fns.js

13

http://teaching.bitflip.com.au/code/1531/23T1/env1/src/2.1_date_fns.js

🫀 Anatomy Of NPM
The structure of NPM involves a few key files and folders.

package.json
Where we store meta data about our project including a list of dependencies to install

package-lock.json
Where we store versioning information about dependencies to ensure everyone has the

right versions

node_modules/
Where the dependencies are installed locally.

(oversimplification)

15

https://nodejs.dev/learn/the-package-lock-json-file

🫀 Anatomy Of NPM
The structure of NPM involves a few key files and folders.

package.json
Changes are always commited to git.

package-lock.json
Changes are always commited to git.

node_modules/
Changes are never commited to git.

16

🫀 Anatomy Of NPM
By committing this information we ensure that our environment is completely

reproducable on others' machines + our own.

If you fresh clone the repo, the node_modules folder won't exist which means the
dependencies won't work.

However, if you run npm install it will read the package.json and package-
lock.json file to install the appropriate dependencies.

17

📦 Custom Scripts
A useful feature of npm that we will explore in another lecture is the ability to add scripts

to the package.json.

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
};

1
2
3

19

📦 Custom Scripts
We can add our own command and run it with:

npm run hayden.

Scripts use a mixture of bash and json. We will cover these more later in the course.
For now we'll tell you exactly how to modify this stuff.

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "hayden": "echo 'Hi Hayden!'"
};

1
2
3
4

20

�Feedback

Or go to the .form here

21

https://docs.google.com/forms/d/e/1FAIpQLSe4_-ZBqxXV05sqbGmE17plgJ7c-54U52wnodbEYSaE4ZZMcg/viewform?usp=pp_url&entry.629327800=2.1%20Package%20Management

