
COMP1531
👯 Coding Together - Git - Solo Usage

Lecture 1.2

Author(s): Hayden Smith




(Download as PDF)

1

http://teaching.bitflip.com.au/1531/23T3/1.2-git-solo.pdf


🤔 The Problem
To effectively work on large projects in groups of engineers we need a more complex

method of managing our code, that incorporates:

Version control: Tracks changes to our code over time in a detailed and systematic
way (like a logbook and/or time machine)
Concurrent programming: Effectively allows multiple people to work on the same
files or series of files and seamlessly integrate changes together (like google docs but
for code).

Programs like "Dropbox" or "Onedrive" maintain a history of files and allow syncing
between multiple sources. Other tools like Google Docs allow for version control and
collaboration. However, they are too simple for our needs or not specific enough to

programming.

2



💡 A Popular Solution: Git
Git is a version control tool that enables people to work concurrently on the same

codebase. Git is a program just like gedit, vscode, gcc, etc.

Git is built for programmers and designed for managing code across lots of people with a
detailed history.

There are other solutions to the same problem, but git continues to be popular in both
industry and open source work.

4



💡 A Popular Solution: Git
Git is a distributed version control software. Whilst many users share work via a central
cloud, each user has a full copy of the work and therefore each user has a full backup of

the work.

source

5

https://codexitos.com/what-is-git-and-why-you-should-use-it/


💡 A Popular Solution: Git
Git is just a command line program. However, due to it's popularity web services came to
lift that not old act as the central server for the code, but also offer a GUI to help manage

some of git's functionality.

There are 3 major git software tools that implement the git language via an easy-to-use
web app.

They all do basically the same thing. Just like how Chrome, Safari, Firefox are different
ways to interacting with the exact same internet. In this course we will be using Gitlab.



6



👩🏽‍🏫 Learning Git
We're going to learn git in 3 key stages:

1. Version control on a single machine (today)
2. Version control across multiple of your machines (today)
3. Version control across a team of engineers (next lecture)

These will be practical demos. If you want to follow a written guide, then please checkout
.Atlassian's git guide

8

https://www.atlassian.com/git


👩🏻‍💻 Learning Git
Single Machine

Stage 1. Version control on a single machine

getting setup
SSH Keys
git clone

status of work
git status

git log

doing work
git add

git diff

git commit

git push

9



👩🏻‍💻 Learning Git
Multiple Of Your Machines

Stage 2. Version control across multiple of your machines

multiple machines
git pull

merge conflicts

10



🥳 Git Commands Summary
The following commands are what we learn before we worry about "branches" next.

Command Description Example

git clone Clones from a cloud repository to a local repository git clone

git status Tells you information about the "state" of your repo git status

git log Gives you a commit history of commits made git log

git add Adds a particular untracked file to your repo ready for commit, or
stages a tracked file ready for commit

git add --all

git add file.py

git diff Shows the difference between the last commit and the work
you've done since then

git diff

git commit Commits changes ("takes a snapshot") of your work git commit -m
"Message name"

git push Syncs the commit history locally with the commit history on the
cloud

git push

git push origin
master

git pull Syncs the commit history on the cloud with the commit history
locally

git pull

git pull origin
master

11



👂🏼Feedback



Or go to the .form here

12

https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u1.2%20Git%20-%20Solo%20Usage



