
COMP1531
🛠️ Development - Javascript

Lecture 1.4

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/23T3/1.4-javascript.pdf

In This Lecture

Why? 🤔
Javascript is a valuable tool to learn and necessary for the project

What? 📰
Learning a second language
Javascript vs C
Core javascript language features

2

👩🏻‍💼 Disclaimer
Because you already know C, we will teach Javascript very quickly and mainly focus on

the differences between Javascript and C.

Unlike C, Javascript has a sprawling set of capabilities - the language will feel much
bigger, and therefore you might feel you have a poorer grasp on it.

Don't expect to know everything about Javascript this term. Just focus on only learning
what you need to solve a problem at hand, and you will learn more super quick.

3

🤟🏽 Javascript
Javascript is a high level multi-paradigm scripting language with a massive popularity in

the web-based software engineering space.

Javascript has become the universal go-to language to build web-based applications,
which is more and more becoming the primary way we consume end-user applications

5

🤟🏽 Javascript
Javascript is a high level multi-paradigm scripting language with a massive popularity in

the web-based software engineering space.

Javascript has become the universal go-to language to build web-based applications,
which is more and more becoming the primary way we consume end-user applications

function hello(a, b, c) {
 return `${a} ${b}`;
}

const z = 3;1
2
3
4

1.4_intro.js

5

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_intro.js

🤟🏽 Javascript
Why?

Javascript has an extremely rich open source library and package manager that
allows you to build apps quickly.
Javascript is very high level, making it easy to write code.
Javascript is very well supported in industry, and that support is increasing.
Javascript is the foundational language for a large and increasing number of software
engineering companies (largely due to the saturation of web-based products).
Javascript is the langauge of the web.

6

🧑🏼‍🏫 Learning Another Language
Learning another programming language is a very doable exercise, particularly if the
language is from the same . Let's compare some languages.

Procedural Object-oriented Typed Pointers Compiled

C Yes No Yes Yes Yes

C++ Yes Yes Yes Yes Yes

Java No Yes Yes No Yes

Python Yes Yes Can be No No

Javascript Yes Yes Can be No No

Once you know a language from a paradigm, others are much easier.

programming paradigm

8

https://en.wikipedia.org/wiki/Programming_paradigm

🧑🏼‍🏫 Learning Another Language
In the case of learning another language like Javascript after doing COMP1511 with C, the

main hurdles we have to overcome are:

Javascript does not have programmer-defined types, unlike C
Javascript has object-oriented components (which we can somewhat ignore), unlike C
Javascript does not deal with pointers, unlike C (yay)
Javascript is often written at a "higher level" (more abstract)
Javascript does not have an intermediate compilation step, like C

9

🤺 Javascript VS C
Write a function that takes in two numbers, and returns the smaller number

C Javascript

int minimum(int a, int b) {
 if (a > b) {
 	 return b;
 } else {
 	 return a;
 }
}

1
2
3
4
5
6
7

1.4_compare_1.c

function minimum(a, b) {
 if (a > b) {
 return b;
 } else {
 return a;
 }
}

1
2
3
4
5
6
7

1.4_compare_1.js

11

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_1.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_1.js

🤺 Javascript VS C
Write a function that takes in two numbers, and returns the smaller number

C Javascript

int minimum(int a, int b) {
 if (a > b) {
 	 return b;
 } else {
 	 return a;
 }
}

1
2
3
4
5
6
7

1.4_compare_1.c

function minimum(a, b) {
 if (a > b) {
 return b;
 } else {
 return a;
 }
}

1
2
3
4
5
6
7

1.4_compare_1.js

Now let's call the function and print the result!

11

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_1.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_1.js

🤺 Javascript VS C
Write a function that takes in two numbers, and returns the smaller number

C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

12

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

🤺 Javascript VS C
Write a function that takes in two numbers, and returns the smaller number

C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

Now let's run the program

12

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

🤺 Javascript VS C
C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

gcc -Wall -Werror -O -o 1.4_compare_2.c -o runnable
./runnable

1
2

node 1.4_compare_2.js1

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

13

🤺 Javascript VS C
C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

gcc -Wall -Werror -O -o 1.4_compare_2.c -o runnable
./runnable

1
2

node 1.4_compare_2.js1

OK but:

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

13

🤺 Javascript VS C
C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

gcc -Wall -Werror -O -o 1.4_compare_2.c -o runnable
./runnable

1
2

node 1.4_compare_2.js1

OK but:

What is node? 😵‍💫

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

13

🤺 Javascript VS C
C Javascript

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("%d\n", minimum(3, 5));
}

1
 2
int minimum(int a, int b) {3
 if (a > b) {4
 	 return b;5
 } else {6
 	 return a;7
 }8
}9
 10

11
12
13

1.4_compare_2.c

console.log(minimum(3, 5));

function minimum(a, b) {1
 if (a > b) {2
 return b;3
 } else {4
 return a;5
 }6
}7
 8

9

1.4_compare_2.js

gcc -Wall -Werror -O -o 1.4_compare_2.c -o runnable
./runnable

1
2

node 1.4_compare_2.js1

OK but:

What is node? 😵‍💫

Are there steps missing? 😰

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.c
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_2.js

13

🥳 NodeJS
NodeJS is a command line interface that interprets Javascript code within a runtime

environment that is built on Google's V8 engine. 😵‍💫

Or if you want a simpler explanation...

NodeJS is the program that compiles and runs Javascript.

To really oversimplify it, NodeJS has a similar function to GCC.

15

🥳 NodeJS
NodeJS is what's known as an interpreted language instead of a compiled language.

This means that the program is compiled and run as part of the same step.

This has two implication:

A little slower to run, because it has to compile to runnable code every time.
A little more convenient, as changes to code don't require an extra compilation step.

🤺 Performance V Convenience

16

But let's go and learn more about the language...

17

🦄 Variables, Printing
const, let, console.log

// Variables declared with "let"
// can be modified after definition
const years = 5;

// Variables declared with "const"
// cannot be modified after definition
const name = 'Giraffe';
const age = 18;
const height = 2048.11;
const notexist = undefined;
const existbutnothing = null;

// You print with console.log
console.log(years);
console.log(name);
console.log(height);

// Double and single apostrophes are equivalent
console.log('Hello!');
console.log('how are you?');

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_variables.js

1.4_variables.js

18

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_variables.js

🦄 Strings
Concatenation, string literals

Also come single & double apostrophe.

// We can easily join strings together!
let sentence = 'My';
sentence = sentence + ' name is';
sentence += ' Pikachu';
console.log(sentence);

// If you need to mix variables and
// strings, you can create a string literal
const age = 7;
const name = 'Hayden';
const phrase = `Hello! My name is ${name} and I am ${age}`;
console.log(phrase);

1
2
3
4
5
6
7
8
9

10
11
12

1.4_strings.js

19

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_strings.js

🦄 Control Structures
if, else if, else, while, for.

const number = 5;
if (number > 10) {
 console.log('Bigger than 10');
} else if (number < 2) {
 // Do nothing
} else {
 console.log('Number between 2 and 9');
}

console.log('--------------------------');

let i = 0;
while (i < 5) {
 console.log('Hello there');
 i += 1;
}

console.log('--------------------------');

for (let i = 0; i < 5; i++) {
 console.log('Hello there');
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1.4_control_structures.js
20

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_control_structures.js

🦄 Functions
Very similar syntax to C

function minimum(a, b) {
 if (a > b) {
 return b;
 } else {
 return a;
 }
}

1
2
3
4
5
6
7

1.4_compare_1.js

21

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_compare_1.js

Pause for a bit of theory...

📦 Data Structures: Collections
We'll now discuss two important data structures that are both collections of data.

Collections can either be:

Sequential collections
Associative collections

23

🔢 Sequential Collections
In sequential collections values are referenced by their integer index (key) that

represents their location in an order.

In Javascript sequential collections are represented by an array. In Javascript, arrays are
used for both C-style arrays and C-style linked lists.

24

🗺 Associative Collections
In associative collections values are referenced by their string key that maps to a value.

They often do not have an inherent sense of order.

They're kind of like C structs, except the structure does not have to be defined at
compile time.

name → "sally"
age → 18
height → "187cm"

Unpause, back to code!

25

🍋 Arrays
Arrays are mutable ordered structures of the same type. We will not go into the depths of

using arrays, since most of the semantics are things you are familiar with from
COMP1511. However, we will look at the basic usage of arrays.

// This is a array
const names = ['Hayden', 'Jake', 'Nick', 'Emily'];

console.log(`1 ${names}`);
console.log(`2 ${names[0]}`);
names[1] = 'Jakeo';
names.push('Rani');
console.log(`3 ${names}`);

1
2
3
4
5
6
7
8

1.4_arrays.js

1 Hayden,Jake,Nick,Emily
2 Hayden
3 Hayden,Jakeo,Nick,Emily,Rani

1
2
3

27

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_arrays.js

🍋 Arrays
We can use arrays with loops, too.

const items = ['a', 'b', 'c', 'd', 'e'];

let i = 0;
while (i < 5) {
 console.log(items[i]);
 i++;
}

for (let j = 0; j < 5; j++) {
 console.log(items[j]);
}

for (let k = 0; k < items.length; k++) {
 console.log(items[k]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.4_array_basic.js

28

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_array_basic.js

🍋 Arrays
We can use arrays with loops, too.

function getEvens(nums) {
 const evens = [];
 for (let i = 0; i < nums.length; i++) {
 if (nums[i] % 2 === 0) { // Why is this not == ??
 evens.push(nums[i]);
 }
 }
 return evens;
}

const allNumbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
console.log(getEvens(allNumbers));

1
2
3
4
5
6
7
8
9
10
11
12

1.4_functions.js

29

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_functions.js

🍋 Arrays
Because Javascript is a higher level language, we have the ability to use a more concise

and clear syntax when doing looping. You are not required to use this in the first few
weeks of the course but we'd encourage all students to move toward this.

const items = ['a', 'b', 'c', 'd', 'e'];

// prints 0, 1, 2, 3, 4
for (const i in items) {
 console.log(items[i]);
}

// prints a, b, c, d, e
for (const item of items) {
 console.log(item);
}

console.log(items.includes('c'));

1
2
3
4
5
6
7
8
9
10
11
12
13

1.4_array_advanced.js

30

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_array_advanced.js

🍊 Objects
Objects are mutable associative structures that may consist of many different types.

They are similar to C-style structs.

You can use them when you need a collection of items that are identified by a string
description, rather than a numerical index (arrays).

const student = {
 name: 'Emily',
 score: 99,
 rank: 1,
};

console.log(student);
console.log(student.name);
console.log(student.score);
console.log(student.rank);

student.height = 159;
console.log(student);

1
2
3
4
5
6
7
8
9
10
11
12
13

1.4_objects.js

32

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_objects.js

🍊 Objects
We can create and populate objects different ways.

Both of these programs would print { name: 'Sally', age: 18, height:
'187cm' }

const userData = {};
userData.name = 'Sally';
userData.age = 18;
userData.height = '187cm';
console.log(userData);

1
2
3
4
5

1.4_object_basic1.js

const userData = {
 name: 'Sally',
 age: 18,
 height: '187cm',
};
console.log(userData);

1
2
3
4
5
6

1.4_object_basic2.js

33

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_basic1.js
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_basic2.js

🍊 Objects
We can mix the two methods, and also use alternative syntax with assigning.

Or in a more full example.

userData.prop = 1;
userData['prop'] = 1;

1
2

// You can assign more keys even
// after creation
const userData = {
 name: 'Sally',
 age: 18,
};
userData.height = '187cm';

console.log(userData);

1
2
3
4
5
6
7
8
9

1.4_object_more1.js

// You can reference keys with either
// obj.key or obj['key']
const userData = {};
userData.name = 'Sally';
userData.age = 18;
userData.height = '187cm';
console.log(userData);

1
2
3
4
5
6
7

1.4_object_more2.js

34

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_more1.js
http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_more2.js

🍊 Objects
We can also get various properties of an object using the Object functions.

const userData = {
 name: 'Sally',
 age: 18,
 height: '187cm',
};

const keys = Object.keys(userData);
const entries = Object.entries(userData);
const values = Object.values(userData);

console.log(keys);
console.log(entries);
console.log(values);

1
2
3
4
5
6
7
8
9
10
11
12
13

1.4_object_props_1.js

['name', 'age', 'height']

[['name', 'Sally'], ['age', 18], ['height', '187cm']]

['Sally', 18, '187cm']

35

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_props_1.js

🍊 Objects
We can also loop through objects and check if certain keys are in them.

const userData = {
 name: 'Sally',
 age: 18,
 height: '187cm',
};

for (const key in userData) {
 console.log(key);
}

if ('name' in userData) {
 console.log('Has name key');
}

1
2
3
4
5
6
7
8
9
10
11
12
13

1.4_object_props_2.js
name

age

height

Has name key

36

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_props_2.js

🧐 Further Discussion Of Objects
The following code exhibits behavior you're probably not used to:

"arr" is an array, but it also seems to have:

A property length that we never set?
Some kind of function that is being called?

Let's look at why this is.

const arr = [1, 2, 3];
console.log(arr.length);
console.log(arr.includes(3));

1
2
3

1.4_object_model.js

38

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_model.js

🕛 Recap: Various Types In C

4 Bytes, No Functions 8 Bytes, No Functions

Simple types in C were basic types that occupied limited memory.
Structs were collections of primitive types wrapped into an "object".
We would create instances of these "objects" and then access properties of them.
We can expand this concept into Javascript.

int a;1 struct point {
 int x;
 int y;
}

1
2
3
4

39

🍅 Everything In Javascript Is An Object

Many Bytes, Some Functions

In Javascript, basically every data type acts like an "object"
This array is an .
An "object" being a data type that:

Contains 0 or more properties (/attributes)
Contains 0 or more functions (/methods)

To oversimplify: It's structs with functions

const arr = [1,2,3];1

object

40

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

🍅 Everything In Javascript Is An Object

Can I Define My Own Objects?
Yes! But we don't cover that in this course.

Does That Make Javascript Object-Oriented?
C is a purely procedural language
Java is a purely object-oriented language
Javascript is a procedural language with OO capabilities

41

👯‍♂️ Tying Some Things Together
Let's try some lists of objects.

const userData = [
 {
 name: 'Sally',
 age: 18,
 height: '186cm',
 }, {
 name: 'Bob',
 age: 17,
 height: '188cm',
 },
];

const keys = Object.keys(userData);
const entries = Object.entries(userData);
console.log(keys);
console.log(entries);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1.4_object_loop1.js

['name', 'age', 'height']

[['name', 'Sally'], ['age', 18], ['height', '187cm']]

['Sally', 18, '187cm']

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_loop1.js

43

👯‍♂️ Tying Some Things Together
Let's try some lists of objects.

const userData = [
 {
 name: 'Sally',
 age: 18,
 height: '186cm',
 }, {
 name: 'Bob',
 age: 17,
 height: '188cm',
 },
];

for (let i = 0; i < userData.length; i++) {
 console.log(`${userData[i].name}'s properties are:`);
 console.log(` name: ${userData[i].name}`);
 console.log(` age: ${userData[i].age}`);
 console.log(` height: ${userData[i].height}`);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1.4_object_loop2.js

44

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_loop2.js

👯‍♂️ Tying Some Things Together
Let's try some lists of objects.

const userData = {
 Sally: {
 age: 18,
 height: '186cm',
 },
 Bob: {
 age: 17,
 height: '188cm',
 },
};

for (const key in userData) {
 console.log(`${key}'s properties are:`);
 for (const key2 in userData[key]) {
 console.log(` ${key2}: ${userData[key][key2]}`);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1.4_object_loop3.js

Sally's properties are:

age: 18

height: 186cm

Bob's properties are:

age: 17

height: 188cm

45

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_object_loop3.js

👯‍♂️ Tying Some Things Together
Let's try more lists of objects.

const student1 = { name: 'Hayden', score: 50 };
const student2 = { name: 'Nick', score: 91 };
const student3 = { name: 'Emily', score: 99 };
const students = [student1, student2, student3];

console.log(students);

// Approach 1
const numStudents = students.length;
for (let i = 0; i < numStudents; i++) {
 const student = students[i];
 if (student.score >= 85) {
 console.log(`${student.name} got an HD`);
 }
}

// Approach 2
for (const student of students) {
 if (student.score >= 85) {
 console.log(`${student.name} got an HD`);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1.4_combining.js

46

http://teaching.bitflip.com.au/code/1531/23T2/env0/src/1.4_combining.js

👂🏼Feedback

Or go to the .form here

47

https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u1.4%20Javascript

