COMP1531
Development - Multi-File & Importing

Lecture 2.2

Author(s): Hayden Smith

(Download as PDF)

http://teaching.bitflip.com.au/1531/23T3/2.2-multi-file.pdf

In This Lecture

« Why?

= Most software projects involve working across multiple files that need to interact

« What?
= Importing libraries
= Importing our own files

Importing Libraries

Similar to C, NodeJS (Javascript) has a number of built-in libraries. These libraries come
with the interpret and don't need to be installed. These libraries were written by other
programmers.

Examples of importing are below.
C Javascript

1 #include <stdio.h> 1 import fs from 'fs';

https://www.w3schools.com/nodejs/ref_modules.asp

1
2
3
4
5

Importing Libraries

How we use them is different too.

C

#include <stdio.h>

int main() {

}

printf("Hello\n");

Javascript

1 import path from 'path';
2 console.log(path.resolve('./"));

Importing Our Own Files

We're also able to import our own files into another file, allowing us
to separate out logic!

function manyString(repeat, str) {
let outString = '';
for (let i = 0; i < repeat; i++) {

1

2

3

4 outString += str;

5]

6 return outString;

[

8
9 console.log(manyString(5, 'hello '));

2.2_split_before.js

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_before.js

Importing Our Own Files

We've now split the code up into two files.

1 function manyString(repeat, str) { 1 import manyString from './2.2_split_after_lib.js';
2 let outString = ''; 2

3 for (let 1 = 0; i < repeat; it++) { 3 console.log(manyString(5, 'hello '));

4 outString += str;

5 3 2.2_split_after_main.js

6 return outString;

7}

8

9 export default manyString;

2.2_split_after_lib.js

We use export default Xwhen we wantto exportasingle thing.

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_lib.js
http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_main.js

Importing Our Own Files

We've now split the code up into two files.

1 import manyString from './2.2_ split_after_1lib.js';

2.2_split_after_main.js

9 export default manyString;

2.2_split_after_lib.js

We use export default Xwhen we wantto exporta single thing,.

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_lib.js
http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_main.js

Importing Our Own Files

We've now split the code up into two files.

1 import manyString from './2.2_ split_after_1lib.js"';

2.2_split_after_main.js

9 export default manyString;

2.2_split_after_lib.js

We use export default Xwhen we wantto exporta single thing.

But now what if we want to export multiple things?

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_lib.js
http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_split_after_main.js

Importing Our Own Files

For example, how do we export both functions from this file?

13 export default manyString; // How do we add more??

2.2_multi_export_lib_p_1.js

10

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_multi_export_lib_p_1.js

13
14
15
16

Instead of exporting one thing, we can export many things! Please

export {

Ie

manyString,
addBrackets,

Importing Our Own Files

note, this is not exporting an object.

2.2_multi_export_lib_p_2.js

11

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_multi_export_lib_p_2.js

13
14
15
16

Importing Our Own Files

We can use destructuring for importing as well.

export {
manyString,
addBrackets,

i
2.2_multi_export_lib_p_2.js

as~ownN R

import { addBrackets, manyString } from './2.2 multi_ export_lib_p_

const b = addBrackets('hello ');
const many = manyString(5, b);
console.log(many);

2.2_multi_export_main_p_2.js

12

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_multi_export_lib_p_2.js
http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.2_multi_export_main_p_2.js

Importing Our Own Files

In summary:

Default Export Named Export

function a() { 1 function a() {
return 0, 2 return 0,
b 3}
4
export default a; 5 function b() {
6 return 0;
7}
import a from './above.js' 8
9 export {
. . 10 a,
Exporting one thing 11 b,
12},

1 import { a, b } from './above.js';

Exporting one or more things

13

Other Notes About Importing

In general we try and always use named exports. This:

1.Adds flexibility to our code design as it allows us to add more exports later.
2. Means that users of a library by default have to reuse the same name of your function.
This is not true when you return a function directly. This avoids confusion.

Fns.Js Main.Js
1 function sum(a, b) { 1 import anyNameIwWant from './fns.js';
2 return a + b; 2
3 } 3 console.log(anyNameIwWant(1,2));
4
5 export default sum;

15

Other Notes About Importing

That being said, with named exports (i.e. an export within an object) we can still alias the
name if we need to. This is especially useful if you already have functions in your file that
use that name.

Fns.Js Main.Js
1 function sum(a, b) { 1 import { sum as simpleSum } from './fns.js';
2 return a + b; 2
3 } 3 function sum(a, b, c) {
4 4 return a + b + c;
5 export { 5 }
6 sum, 6
7 }; 7 console.log(simpleSum(1,2));

Other Notes About Importing

And if we're importing too many things, we can just break it up over multiple lines.

1 import {

2 functioni,

3 function2,

4 functions3,

5 function4,

6 } from './bigfile.js’;

Feedback

Or go to the form here.

https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u2.2%20Multi-file%20&%20Importing

