
COMP1531
✅ Correctness - Dynamic Verification

Lecture 2.3

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/23T3/2.3-dynamic-verification.pdf

In This Lecture

Why? 🤔
Writing tests are critical to ensure an application works
Approaching testing the right way will yield better results
We need to be able to able to understand the characteristics of programming
languages and approaches in terms of how they may prevent bugs

What? 📰
Abstraction & Black boxes
Design by contract
jest
safety

2

👀 Verification
Verification in a system life cycle context is a set of activities that compares a product of

the system life cycle against the required characteristics for that product. This may
include, but is not limited to, specified requirements, design description and the system

itself.

I.E. Verification is checking if the system has been built correctly.

4

👀 Verification
"Poor so�ware quality costs more than $500 billion per year worldwide" – Casper Jones

Systems Sciences Institute at IBM found that it costs to fix a
so�ware bug a�er release, rather than during the design process

four-to five-times as much

5

http://blog.celerity.com/the-true-cost-of-a-software-bug

👀 Verification
Verification can be broken up into two main types:

Static verification: Testing before executing the code. Sometimes we call these
compile-time checks.
Dynamic verification: Testing whilst executing the code. Sometimes we call these run-
time checks.

6

🔓 So�ware Safety
We can consider verification as a process to help make so�ware safe. This is different

from making so�ware secure.

Safety: Protection from accidental misuse
Security: Protection from deliberate miuse

So�ware becomes unsafe when its design or implementation allow for unexpected or
unintended behaviours, particularly during runtime. For example:

Reading uninitalized memory
Writing outside array bounds

E.G. Around 94% of spreadsheets contain errors*. For any given spreadsheet formula,
there's a 1% chance it contains an error**

7

http://tuck-fac-cen.dartmouth.edu/images/uploads/faculty/serp/Errors.pdf

💿 Example: Memory Safety
C is not considered a memory safe language. However, Javascript is.

Javascript prevents access to memory that hasn't been initialised or allocated. It does
this by dynamically checking at runtime.

Whereas in C there is no bounds checking performed for array accesses. Pointers can be
dereferenced even if they don't point to allocated memory.

C prioritises performance over memory safety. Javascript vice-versa.

8

⚡ Static Verification
Static verification is usually considered a more robust and reliable form of testing.

However, it's limited as not everything can be verified statically.

In this course we will talk about Static Typing and Linting. We will talk about static
verification later.

9

🧨 Dynamic Verification
Verification performed during the execution of so�ware
This is o�en what we mean when we say "testing".
Typically falls into one of two categories:

Testing in the small
Testing in the large

“Testing Shows The Presence, Not The Absence Of Bugs” — Edsger

W. Dijkstra

11

🧨 Dynamic Verification - Why?
In the real world terrible things happen to programs all the time. Invalid input,

unexpected data, broken I/O.

Dynamic testing is about making your program more robust in the face of real and
inevitable things that go wrong while a program is running.

Whilst testing helps show your program is correct, the other long term benefit is helping
you ensure that as your code changes over time that it's not expriencing regressions.

People forget things. Tests tend not to.

“Testing Shows The Presence, Not The Absence Of Bugs” — Edsger
W. Dijkstra

12

🧨 Dynamic: Testing In The Small
We o�en refer to small tests as unit tests, which the ISTQB defines as the testing of

individual so�ware components.

These can be white-box or black-box tests (we'll come back to this later), and are written
o�en by engineers who will implement work.

Unit tests are o�en just testing particular functions in isolation.

13

🧨 Dynamic: Testing In The Large
Larger tests are tests performed to expose defects in the interfaces and in the
interactions between integrated components or systems (definition).

These tests tend to be black-box tests, and are written by either developers or
independent testers.

Typically these tests fall into these categories:

Module tests (testing specific module)
Integration tests (testing the integration of modules)
System tests (testing the entire system)

ISTQB

14

https://www.istqb.org/

� Let's Try To Test Naively!
If I le� you alone right now, how would you check if this function works correctly?

function getEven(nums) {
 const evens = [];
 for (const number of nums)
 if (number % 2 === 0) {
 evens.push(number);
 }
 }
 return evens;
}

1
2
3
4
5
6
7
8
9

2.3_even_testing1.js

16

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_even_testing1.js

� Let's Try To Test Naively!
If I le� you alone right now, how would you check if this function works correctly?

Would you do something like this?

function getEven(nums) {
 const evens = [];
 for (const number of nums)
 if (number % 2 === 0) {
 evens.push(number);
 }
 }
 return evens;
}

1
2
3
4
5
6
7
8
9

2.3_even_testing1.js

console.log(getEven([1,2,3]));
console.log(getEven([4,5,6]));
console.log(getEven([7]));

1
2
3

17

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_even_testing1.js

� Let's Try To Test Naively!

Or something like this?

function getEven(nums) {
 const evens = [];
 for (const number of nums) {
 if (number % 2 === 0) {
 evens.push(number);
 }
 }
 return evens;
}

1
2
3
4
5
6
7
8
9

2.3_even_testing1.js

if (getEven([1,2,3]) != [2]) {
 console.log("Doesn't work 1");
}
if (getEven([4,5,6]) != [4,6]) {
 console.log("Doesn't work 2");
}
if (getEven([7]) != []) {
 console.log("Doesn't work 3")};
}

1
2
3
4
5
6
7
8
9

18

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_even_testing1.js

� Let's Try To Test Naively!

However, This Is Not Testing.

Printing errors or visually inspecting output is a method of debugging not testing. You
can't call something a testing method if it doesn't scale well.

A scaled approach is what makes something become testing rather than debugging.

Before we learn about testing, let's quickly talk about what the "black-box" part of black-
box testing is.

19

🐧 Blackbox Testing, Abstraction
A great type of testing relies on testing abstractions.

Abstraction is the notion of focusing on a higher level understanding of the problem and
not worrying about the underlying detail.

We do this all the time when we drive a car, use our computers, order something online.
You're typically focused on expressing an input and wanting an output, with little regard

for how you get that output.

When we look at systems in an abstract way we could also say that we're treating them
like black boxes.

21

🐧 Blackbox Testing, Abstraction
When we're testing our code, we always want to view the functions we're testing as

abstractions / black boxes.

Let's try and write some tests for these stub functions.

// Returns a new string with vowels removed
function removeVowels(string) {
 return 0;
}

// Calculates the factorial of a number
function factorial(num) {
 return 0;
}

1
2
3
4
5
6
7
8
9

2.3_blackbox.js

22

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_blackbox.js

🐧 Blackbox Testing, Abstraction
What do we notice when writing these tests?

The tests are complete, even if they aren't being passed
We don't need to know how the function is implemented to test the function
Now we can go and implement it, and we have tests already done!

// Returns a new string with vowels removed
function removeVowels(string) {
 return 0;
}

// Calculates the factorial of a number
function factorial(num) {
 return 0;
}

console.log(removeVowels('abcde') === 'bcd');
console.log(removeVowels('frog') === 'frg');
console.log(factorial(3) === 6);
console.log(factorial(5) === 120);

1
2
3
4
5
6
7
8
9
10
11
12
13
14

2.3_blackbox2.js

23

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_blackbox2.js

🤡 Jest: Testing In JS
To test at scale we need a real testing framework. is a popular framework for

nodejs/javascript. It is installed with NPM.
jest

describe('users', () => {
 const name = 'Hayden';
 test('check name', () => {
 expect(name).toEqual('Hayden');
 });
});

1
2
3
4
5
6

25

https://jestjs.io/docs/getting-started

🤡 Jest: Testing In JS
Let's setup a simple example.

Let's write some jest tests for our function.

// Returns a new string with vowels removed
function removeVowels(string) {
 return 0;
}

export { removeVowels };

1
2
3
4
5
6

2.3_jest_lib.js

26

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_jest_lib.js

🤡 Jest: Testing In JS
Let's install jest: npm install --save-dev jest.

We add --save-dev because its a dependency being used for development and
testing, but wouldn't be used in production.

27

🤡 Jest: Testing In JS

Now we can run
./node_modules/.bin/jest 2.3_blackbox.test.js

import { removeVowels } from './2.3_jest_lib';

test('deals with no vowels', () => {
 const example1 = removeVowels('bcd');
 expect(example1).toEqual('bcd');
});

1
2
3
4
5
6

28

🤡 Jest: Testing In JS

Now we can run
./node_modules/.bin/jest 2.3_blackbox.test.js

import { removeVowels } from './2.3_jest_lib';

describe('removeVowels', () => {
 test('deals with no vowels', () => {
 const example1 = removeVowels('bcd');
 const example2 = removeVowels('lkj');
 expect(example1).toEqual('bcd');
 expect(example2).toEqual('lkj');
 });
 test('deals with only vowels', () => {
 expect(removeVowels('aei')).toEqual('');
 expect(removeVowels('oiu')).toEqual('');
 });
 test('deals with starting vowels', () => {
 expect(removeVowels('ant')).toEqual('nt');
 expect(removeVowels('old')).toEqual('old');
 });
 test('deals with ending vowels', () => {
 expect(removeVowels('bee')).toEqual('b');
 expect(removeVowels('hi')).toEqual('h');
 });
 test('deals with complex words', () => {
 expect(removeVowels('cannot')).toEqual('cnnt');
 expect(removeVowels('delicious')).toEqual('dlcs}');
 });
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

2.3_jest_lib.test.js

29

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_jest_lib.test.js

🤡 Jest: Testing In JS
Then we'll add "test": "jest" to our package.json scripts.

Now when we run npm run test it will execute ./node_modules/.bin/jest.

30

🤡 Jest: Testing In JS
The general structure is that you have a series of outermost describes that are for a

broad area (e.g. auth).

Then some describes inside that might cover for instance a particular function.

Then inside that, we have tests for each property or use case we're looking to test.

Then inside that we use one of jest's expect functions (please see the docs!

31

https://jestjs.io/docs/expect

🤡 Jest: Testing In JS
describe('auth capabilities', () => {
 describe('auth_register', () => {
 test('fails on invalid email', () => {
 // Execute some logic
 expect(true).toEqual(true);
 });
 });
});

1
2
3
4
5
6
7
8

32

🤡 Jest: Testing In JS
NOTE: the jest syntax relies on some ideas around function syntax and function

callbacks that won't make a lot of sense for another week or two. But that's OK! Just
copy the code examples for now and change the lines that matter.

ALSO NOTE: To use jest in COMP1531 we've had to set a few environment attributes -
this means that you will only be able to get jest working in week 3 labs or iteration 1

onward.

33

📜 Design By Contract
When we're testing or implementing a function, we will typically be working with

information that tells us the constraints placed on at least the inputs.

The documentation can come in a variety of forms.

This information tells us what we do and don't need to worry about when writing tests.

// Returns a new string with vowels removed
// Input is a non-empty string type
// Return type is another string
function removeVowels(string) {
 return 0;
}

// Calculates the factorial of a number
// Input is a number between 1 and 10
// Output is a positive number
function factorial(num) {
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

2.3_design_contract.js

34

http://teaching.bitflip.com.au/code/1531/23T2/env1/src/2.3_design_contract.js

�Feedback

Or go to the .form here

35

https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u2.3%20Dynamic%20Verification

