
COMP1531
📚 Full-Stack - Auth

Lecture 7.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/23T3/7.1-auth.pdf

In This Lecture

Why? 🤔
Basic security is an important step in building good software

What? 📰
Authentication
Authorisation

2

🤨 Auth
It's a nickname COMP1531 gives two important concepts:

Authentication: Process of verifying the identity of a user

Authorisation: Process of determining an authenticated user's access privileges

Note: UNSW has more cybersecurity courses on these topics.

4

🤨 Auth
Examples:

Authentication: Checking if you have a username/password for a valid MS Teams
account

Authorisation: For your valid MS Teams account, checking if you are an admin or not

5

🔒 Authentication
What is the the most basic approach?

1. User registers, we store their username and password
2. When user logs in, we compare their input password to their stored password
3. If it matches, they entered the right password

7

🔒 Authentication
What's wrong with this?

type Data = {
 users: { [email: string]: string };
};

const data: Data = {
 users: {},
};

function register(email: string, pw: string) {
 if (email in data.users) {
 return false;
 } else {
 data.users[email] = pw;
 return true;
 }
}

function login(email: string, pw: string) {
 if (email in data.users) {
 if (pw === data.users[email]) {
 return true;
 }
 }
 return false;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

7.1_auth_simple.ts
8

http://teaching.bitflip.com.au/code/1531/23T3/env2/src/7.1_auth_simple.ts

🔒 Authentication
What's wrong with this?

9

🔒 Authentication
What's wrong with this?

We're storing peoples' passwords!

9

🔒 Authentication
What's wrong with this?

We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid

this??

9

🔒 Authentication
What's wrong with this?

We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid

this??

We need to 🦄 hide 🦄 the password

9

🔒 Authentication
What's wrong with this?

We're storing peoples' passwords!

In this example, yes, it's just being stored in a variable in RAM, which is OK. But in reality,
our "data" would be stored on a hard drive long term! Which is scary. How do we avoid

this??

We need to 🦄 hide 🦄 the password

..what does that even mean..

9

🕵🏽‍♂️ Hiding Information
Encryption and Hashing are both processes of taking plaintext information and

concealing it by turning it into a seemingly random string of characters.

Source

11

https://upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Cryptographic_Hash_Function.svg/1200px-Cryptographic_Hash_Function.svg.png

🕵🏽‍♂️ Hiding Information
Encryption is reversible.

Hashing is irreversible.

Reversibility does make the hiding process finitely less secure (since a method to
"unhide" the information exists). But it provides the convenience of being able to reverse

it!

12

🕵🏽‍♂️ Hiding Information
Let's explore a hashing example together.

13

#️⃣ Hashing
Hashing is our method of irreversibly hiding information. One way to generate a hash is

to use the crypto library. This is built-in to NodeJS so you don't need to npm
install anything.

import crypto from 'crypto';

function getHashOf(plaintext: string) {
 return crypto.createHash('sha256').update(plaintext).digest('hex
}

// Rainbow Table
console.log(getHashOf('a'));
console.log(getHashOf('b'));
console.log(getHashOf('c'));
console.log(getHashOf('d'));
console.log(getHashOf('e'));
console.log(getHashOf('happylittleturtleateasnack'));

export { getHashOf }; // ignore this line

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

7.1_hash.ts

http://teaching.bitflip.com.au/code/1531/23T3/env2/src/7.1_hash.ts

getHashOf converted BigMacSecretSauce to
8c64be3db244091660a3b69ef548e3d43f9f945aaae78e1ff2de939cac1116ba

There is no way to convert hash to msg! Even if you know the entire method of how this
conversion happens, it's not reasonably possible to reverse it.

15

#️⃣ Hashing
How would we apply this to our authentication issue?

type Data = {
 users: { [email: string]: string };
};

const data: Data = {
 users: {},
};

function register(email: string, pw: string) {
 if (email in data.users) {
 return false;
 } else {
 data.users[email] = pw;
 return true;
 }
}

function login(email: string, pw: string) {
 if (email in data.users) {
 if (pw === data.users[email]) {
 return true;
 }
 }
 return false;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

7.1_auth_simple.ts

16

http://teaching.bitflip.com.au/code/1531/23T3/env2/src/7.1_auth_simple.ts

#️⃣ Hashing
How would we apply this to our authentication issue?

import { getHashOf } from './7.1_hash';

 data.users[email] = getHashOf(pw);

 if (getHashOf(pw) === data.users[email]) {

type Data = {1
 users: { [email: string]: string };2
};3
 4

5
 6
const data: Data = {7
 users: {},8
};9
 10
function register(email: string, pw: string) {11
 if (email in data.users) {12
 return false;13
 } else {14

15
 return true;16
 }17
}18
 19
function login(email: string, pw: string) {20
 if (email in data.users) {21

22
 return true;23
 }24
 }25
 return false;26
}27

7.1_auth_fixed.ts

17

http://teaching.bitflip.com.au/code/1531/23T3/env2/src/7.1_auth_fixed.ts

👮🏽 Authorisation
Authorisation is a much simpler topic. It's really just about you having appropriate logic

to decide what permissions a given authenticated user does or doesn't have.

An example is in your project: Is the user a member or an admin?

We will not explore this topic further in COMP1531.

18

👂🏼Feedback

Or go to the .form here

19

https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u7.1%20Auth

