COMP1531
Coding Together - Git - Undo

Lecture 9.3

Author(s): Hayden Smith

(Download as PDF)



http://teaching.bitflip.com.au/1531/23T3/9.3-git-undo.pdf

In This Lecture

« Why?
= Sometimes we make mistakes using git, and we need methods to be able to resolve
them (carefully)

« What?
» Doing a hard reset to a pointin time
= Altering the git history
= Amending a commit




Mistakes

e Everything we've done until this point continues to build on the git history. But we've
largely considered the git history immutable.

o With git, sometimes we make mistakes. Sometimes we want to undo things, or change
history.

e Two ways we're going to discuss this are:
= git resets
» git commitamend




Git Reset

Atlassian has a very clear article about git reset. We will use this as guidance. We will
mainly discuss hard and soft resets through a demonstration.



https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

Git Reset

git reset --hard [hash]

Sets all of your code to a specific commit hash. This is used for saying "l want to go back
in time, and | don't care about anything that's happened since that point I'm going back

to.




Git Reset

git reset --soft [hash]

Keeps all of your current code the same, but just changes what commit you're pointing
to (i.e. point to a new hash). This is used for saying "I like the code I have, so let's not
change anything, but | want to alter the history of commits that got me here."




Git Commit --Amend

git commit --amend -m "Commit"

e Sometimes we need to update our previous commit name. We can do that easily by
making another commit that over-rides it.

e The - -amend flag will make the commit, but it will replace the most recent commit
with the new commit instead of adding another commit to the history

e Let's do a demonstration.




Feedback



https://forms.office.com/Pages/ResponsePage.aspx?id=pM_2PxXn20i44Qhnufn7o2hFXO2UhJ9MuJR9GDAlgEpUQlowVkUzUEZaRE02RVdNSzNMTzZLUVo3My4u9.3%20Git%20-%20Undo




