
COMP1531
✅ Correctness - Static Verification

Lecture 3.3

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/24T1/3.3-static-verification.pdf

In This Lecture

Why? 🤔
The best time to improve so�ware safety is before the code runs

What? 📰
Type Safety
Typescript
Examples

2

🌳 Disclaimer: Environment Change
Beginning from lecture 2.1, to run this code you may require some other files in your repo

- simply copy the lecture content or use a lab in a following week to run any code you
see.

4

😬 Unexpected Input
Sometimes we write a really nice function like this. And everyone uses it correctly.

function manyString(repeat, str) {
 let outString = '';
 for (let i = 0; i < repeat; i++) {
 outString += str;
 }
 return outString;
}
console.log(manyString('hello ', 5));

1
2
3
4
5
6
7
8

many_string_rude.js

5

http://teaching.bitflip.com.au/code/1531/24T1/3.3/many_string_rude.js

😬 Unexpected Input
Sometimes we write a really nice function like this. And everyone uses it correctly.

function manyString(repeat, str) {
 let outString = '';
 for (let i = 0; i < repeat; i++) {
 outString += str;
 }
 return outString;
}
console.log(manyString('hello ', 5));

1
2
3
4
5
6
7
8

many_string_rude.js

...right? 😳

5

http://teaching.bitflip.com.au/code/1531/24T1/3.3/many_string_rude.js

😬 Unexpected Input
Wrong! Users of your functions will o�en make mistakes using them.

This program prints out nothing... the worst mistake a program makes is one that does
not cause an error.

console.log(manyString('hello ', 5));

function manyString(repeat, str) {1
 let outString = '';2
 for (let i = 0; i < repeat; i++) {3
 outString += str;4
 }5
 return outString;6
}7

8

many_string_rude.js

6

http://teaching.bitflip.com.au/code/1531/24T1/3.3/many_string_rude.js

😬 Unexpected Input
How can we protect against this?

7

😬 Unexpected Input
We'll add a type check in during runtime to check the type being passed in.

function manyString(repeat, str) {
 if (!(repeat instanceof 'number')) {
 console.error('repeat argument is not a number');
 return undefined;
 }
 if (!(str instanceof 'string')) {
 console.error('str argument is not a string');
 return undefined;
 }
 let outString = '';
 for (let i = 0; i < repeat; i++) {
 outString += str;
 }
 return outString;
}
console.log(manyString('hello ', 5));

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

many_string_runtime.js

8

http://teaching.bitflip.com.au/code/1531/24T1/3.3/many_string_runtime.js

🦺 Type Safety
Preventing mismatches between the actual and expected type of variables, constants
and functions
C is type-safe*, as types must be declared and the compiler will check that the types
are correct
Javascript, on its own, is not type-safe. Everything has a type, but that type is not
known till the program is executed.

9

🔫 Type Safety In Javascript
The solution we saw previously is what we would refer to as improving so�ware safety
dynamically - by "catching" issues at runtime.
However, rather than dynamically checking for certain errors, it is always better if
errors can be detected statically.

We need a way to check for correct types statically in Javascript.

10

🔥 Typescript
Typescript is a language built on top of Javascript. It's job is to check the types in your

program and outputs Javascript that is then run with node.

But how do I run this code?

function sum(a: number, b: number) {
 return a + b;
}
console.log(sum(1, 2));

1
2
3
4

mycode.ts

12

http://teaching.bitflip.com.au/code/1531/24T1/3.3/mycode.ts

🔥 Typescript
Typescript is another dependency we need to install:

npm install --save-dev typescript ts-node

13

🔥 Typescript

Running node With Typescript

Once this is installed, we can run our typescript code (e.g. 3.3_mycode.ts) with the
following command:

node_modules/.bin/ts-node 3.3_mycode.ts.

14

🔥 Typescript

Type Checking With Typescript

Whilst ts-node does some type checking, it also runs the code. It's useful to have a way
to "type check without running" that also checks a bit more strictly.

node_modules/.bin/tsc --noImplicitAny 3.3_mycode.ts.

15

🔥 Typescript
In reality you would normally add both of these commands to your package.json

"scripts": {
 "ts-node": "ts-node",
 "tsc": "tsc --noImplicitAny"
}

1
2
3
4

16

🔥 Typescript
Now let's try and use tsc on a program that has type errors in it! Like our original

program. But let's write it in typescript.

node_modules/.bin/tsc 3.3_mycode_broken.ts.

Let's see what it outputs!

function manyString(repeat: number, str: string) {
 let outString = '';
 for (let i = 0; i < repeat; i++) {
 outString += str;
 }
 return outString;
}
console.log(manyString('hello ', 5));

1
2
3
4
5
6
7
8

mycode_broken.ts

17

http://teaching.bitflip.com.au/code/1531/24T1/3.3/mycode_broken.ts

🔥 How To Typescript
Types are added to programs typically by putting the type name a�er a colon. We've

seen that in our first example.

function sum(a: number, b: number) {
 return a + b;
}
console.log(sum(1, 2));

1
2
3
4

mycode.ts

19

http://teaching.bitflip.com.au/code/1531/24T1/3.3/mycode.ts

🔥 How To Typescript
Typescript doesn't require you to put types on everything. It will infer types that it can,

but sometimes it's unable to.

Typescript doesn't know what name is, you need to give it a type!

Typescript doesn't need to be told name's type. It will figure it out:

function hello(name: string) {
 console.log(name);
}

1
2
3

const name = 'Hayden'1

20

🌼 Examples Of Typing
Basics & Functions

The most basic 3 types in Typescript are string, number, and boolean. Sometimes
we want functions to accept multiple of these.

Functions typically require all parameters to be explicitly typed. You can also type return
types if needed, though usually Typescript will infer.

function hello(name: string): string {
 return `Hello ${name}!`;
}

1
2
3

example_functions.ts

22

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_functions.ts

🌼 Examples Of Typing
Unions

function printIfReady(ready: boolean | number) {
 if (ready === true || (!ready && ready !== 0)) {
 console.log('Ready!');
 }
}
printIfReady(1);
printIfReady(2);
printIfReady(0);
printIfReady(true);
printIfReady(false);

1
2
3
4
5
6
7
8
9
10

example_unions.ts

23

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_unions.ts

🌼 Examples Of Typing
Lists

function create10List(item: string | number) {
 const arr: Array<string | number> = [];
 for (let i = 0; i < 10; i++) {
 arr.push(item);
 }
 return arr;
}

1
2
3
4
5
6
7

example_lists.ts

24

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_lists.ts

🌼 Examples Of Typing
Aliases

type ListItem = string | number;

function create10List(item: ListItem) {
 const arr: ListItem[] = [];
 for (let i = 0; i < 10; i++) {
 arr.push(item);
 }
 return arr;
}

1
2
3
4
5
6
7
8
9

example_aliases.ts

25

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_aliases.ts

🌼 Examples Of Typing
Optionals

// Note:
// end?: number
// = end: number | undefined

function substring(str: string, start: number, end?: number) {
 let newString = '';
 const modifiedEnd = end || str.length;
 // ^ What about end ?? str.length
 for (let i = start; i < modifiedEnd; i++) {
 newString += str[i];
 }
 return newString;
}

console.log(substring('hayden', 0, 3));
console.log(substring('hayden', 2));

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

example_optionals.ts

26

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_optionals.ts

🌼 Examples Of Typing
Objects

type Person = {
 name: string;
 age?: number;
 height?: number;
}

const person: Person = {
 name: 'Hayden',
};

person.age = 5;

1
2
3
4
5
6
7
8
9
10
11

example_objects.ts

27

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_objects.ts

🌼 Examples Of Typing
Literals

type visibility = 'Private' | 'Public';

function createChannel(name: string, visibility: visibility) {
 // Do things
}

1
2
3
4
5

example_literals.ts

28

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_literals.ts

🌼 Examples Of Typing
Any

any is a type that kind of makes typescript pointless. It's great for a stub and a "I will
come back to this later"

// @ts-nocheck

function hello(name: any): any {
 return `Hello ${name}!`;
}

function substring(str: any, start: any, end: any) {
 return null;
}

type Person = any;
const person: Person = {
 name: 'Hayden',
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14

example_any.ts
29

http://teaching.bitflip.com.au/code/1531/24T1/3.3/example_any.ts

🌼 Examples Of Typing
A much more thorough array of types and their explanations can be found on the

.typescript website

30

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html

🦺 Type Safety
A summary of languages and their type safety:

Languages with a non-optional built-in static type checking
C
Java
Haskell

Languages with optional but still built-in static type checking
Typescript
Objective C

Languages with optional external type checkers
Python
Ruby

32

🛠 Migrating To Typescript
Included below are some of the steps to get typescript working:

1. Run npm install --save-dev ts-jest @types/jest. This allows
Typescript to work with your jest files.

2. Run . This avoids complicated issues
with the types of imports we do.

3. Add files tsconfig.json and jest.config.js with course-provided info in
them.

4. Update package.json to include a script tsc that just runs tsc --
noImplicitAny and ts-node that just runs ts-node.

5. You can also add npm run tsc as a step in pipelines (see next slide).

You aren't required to know these. You can just reference lecture code.

npm install --save-dev @types/node

33

https://stackoverflow.com/questions/31173738/typescript-getting-error-ts2304-cannot-find-name-require

🛠 Typescript With CI
Now we can add another step to our pipeline

image: comp1531/basic:latest

stages:
 - checks

testing:
 stage: checks
 script:
 - npm run test

typecheck:
 stage: checks
 script:
 - npm run tsc

1
2
3
4
5
6
7
8
9
10
11
12
13
14

gitlab-ci_type.yml

34

http://teaching.bitflip.com.au/code/1531/24T1/3.3/gitlab-ci_type.yml

🤗 Don't Stress!
All of the environmental setup or changes you've seen in this lecture will either be done

for you or will be given to you with clear unambiguous instructions.

We don't expect you to all be experts in tweaking these environments.

35

�Feedback

Or go to the .form here

36

https://docs.google.com/forms/d/e/1FAIpQLSf6fPgHh1_5ggDHp964DPlcyfrqZUjny4UB2_ITJRbkQDQ2kw/viewform

