COMP1531
Full-Stack - HTTP Servers

Lecture 4.2

Author(s): Hayden Smith

(Download as PDF)

http://teaching.bitflip.com.au/1531/24T1/4.2-http-server.pdf

In This Lecture

« Why?

» Web servers are fundamental part of web-based full-stack software

« What?
= Networks
= Express Server
= APls
= Crud

Networks

e Network: A group of interconnected computers that can communicate

 Internet: A global infrastructure for networking computers around the entire world
together

e World Wide Web: A system of documents and resources linked together, accessible via
URLS

Network

Networks

If you want to learn more about networking, go and study COMP3331.

Network Protocols

e Communication over networks must have a certain "structure" so everyone can
understand.

e Humans do this all the time - waving, handshakes, clapping. Standard operation
procedure that structures how we share info.

e Different "structures" (protocols) are used for different types of communication.

Network Protocols

Astrit Krasniqi CCNA/CCNP Certified Instructor - CCNA Cyb s, Chapter 4: Network Protocols and Services

TCP/IP Protocol Suite and Communication Process

Name Host Email Fil Web
System Config Transfer
Application ons | BNd ENG [HTTe" |
Layer
DHCP POP

source

HTTP is an example of one of the protocols. It is the protocol of the web. The primary
protocol you use to access URLs in your web browser.

https://i.ytimg.com/vi/TMVVjOAw7HE/maxresdefault.jpg

Queued files

Adobe

Direc...

Failed transfers

stom Office Templates

Remof

Successful transfers

Network Protocols

Examples

Write: (no subject) - Thunderbird

i §

Hayden Smith <z341800

Subject:

graph w Variable Width

Hayden Smith (LinkedIn)

Lecturer-in-charge COMP1531
School of Computer Science and Engineering

Options controlling session logging

Session logging
@ None Printable output
Al session output SSH packets
SSH packets and raw data
Log file name
putty log
(Log file name can contain &Y, &M, &D for date, &T for
time, and &H for host name)
What to do if the log file already exists
Always overwrite it
append to the end of it
9 Ask the user every time

7| Flush log file frequently

Options specific to SSH packet logging
v/ | Omit known password fields
Omit session data

Network Protocols

Examples

8 Popular (541454 Protocols

B blog.bytebytego.com

« — TGP Connegtion _
HTTP REQ -
Web Browsing
o
HTTP/3 =5
(Quic) il a1 &

Virtual Reality

Web Browsing

3
WebSocket ¢ 12

Real-Time Data |

Live Chat “Fransmission

Web Browsing Email Pmtocolsé

(819

%

1
Video Conferencing

B

sender SMTP Server receiver Sending/Receiving Emails

20

Upload nload Files

Control Channel

10

HTTP

HTTP: Hypertext Transfer Protocol

|.E. Protocol for sending and receiving HTML documents (nowadays much more)

Web Browsers (Client) Web Servers

Web browsers are applications to request and receive HTTP.

12

NodeJS Express Server

A very popular npm library exists to allow you to run your own HTTP server with NodeJS.

It's called Express Server.

14

https://expressjs.com/en/starter/hello-world.html

coNO O~ WNBE

NodeJS Express Server

import express from 'express';

const app = express();
const port = 3000;

app.use(express.text()),

app.get('/hello', (req, res) => {

res.send('Hello!"');
});
app.get('/whats/up', (req, res) => {

res.send(JSON.stringify({
value: 'not much',

1));
1)

app.listen(port, () => {
console.log(Listening on port ${port});

1),

express_basic.ts

15

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

NodeJS Express Server

1 import express from 'express';

express_basic.ts

This is us importing the express library

16

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

NodeJS Express Server

3 const app = express();
4 const port = 3000;

express_basic.ts

This creates an instance of a server, and we define the network port to run on. A port is

essentially one of the roads in and out of a computer's network. There are often 65,000-
ish.

17

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts
https://twitter.com/linuxhandbook/status/1509888564833800200

NodeJS Express Server

6 app.use(express.text());

express_basic.ts

This line is a quirk of express thatis required in order for the data of many requests to

be interpreted.

18

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

NodeJS Express Server

8 app.get('/hello', (req, res) => {

9 res.send('Hello!");

10 });

11

12 app.get('/whats/up', (req, res) => {
13 res.send(JSON.stringify({

14 value: 'not much',
15 }));
16 });

express_basic.ts

This says that "when URL / is accessed, call this function". The function sends some text
to the person accessing that URL.

If we want our server to do more, we need to write lots more.

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

NodeJS Express Server

18 app.listen(port, () => {
19 console.log(Listening on port ${port}’);

20 1),

express_basic.ts

This line actually starts the server (on a particular port). It essentially runs an infinite
loop so the program runs forever constantly waiting for new people to "access" itvia a
certain URL.

20

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

What Servers Are Used For

In the past, servers were just used to serve files back to client's browsers.

Nowadays, they're used to quietly exchange large amounts of information back and forth
between client and server behind the scenes. Often this happens whilst the server is
acting as an API.

This is probably done by sending JSON instead of text/HTML.

21

cONO O hWDNPRE

Servers Often Respond With JSON

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

app.get('/whats/up', (req, res) => {
res.json({
value: 'not much',

1)
1)

app.listen(port, () => {
console.log(Listening on port ${port}’);

1)

express_json.ts

We can send javascript objects as JSON.

23

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_json.ts

Servers Often Respond With JSON

6 app.use(express.json());

9 res.json({

express_json.ts

We can send javascript objects as JSON.

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_json.ts

How Servers Receive Information

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

cONO O b WDNPRE

app.get('/my/url', (req, res) => {
9 const name = reqg.query.name;

10 const age = req.query.age;

11 res.json({

12 name: “Name is ${name}’,
13 age: "Age is ${age}’,

14 3});

15 });

16

17 app.listen(port, () => {
18 console.log(Listening on port ${port}’);

19 1),

input_query.ts

Servers can receive information through the URL. This is called the query data.

26

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_query.ts

How Servers Receive Information

9 const name = req.query.name;
10 const age = req.query.age;

12 name: “Name is ${name} ",
13 age: “Age is ${age}’,

input_query.ts

Servers can receive information through the URL. This is called the query data.

27

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_query.ts

How Servers Receive Information

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

cONO O b WNPRE

app.get('/my/url/:name', (req, res) => {
9 const name = req.params.name;
10 res.json({

11 name: "Name is ${name} ",
12 });

13 });

14

15 app.listen(port, () => {
16 console.log(Listening on port ${port});

17 1),

input_params.ts

Servers can receive information through the URL. This is called the params data.

28

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_params.ts

How Servers Receive Information

8 app.get('/my/url/:name', (req, res) => {
9 const name = req.params.name;

11 name: "Name is ${name} ",

input_params.ts

Servers can receive information through the URL. This is called the params data.

29

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_params.ts

Alterantives To app.get

We actually have an alternative to app . get called app . post which is where we send
information through a body and not over the URL.

8 app.post('/hello', (req, res) => {
9 const name = req.query.body;

post_example.ts

31

http://teaching.bitflip.com.au/code/1531/24T1/4.2/post_example.ts

Alterantives To app.get

Sure, but we can't call this in the browser anymore? How can we talk to it?

API Clients To Talk To Servers

We can use API clients to talk to servers.

Locally you can install "Advanced Rest Client" or on the CSE machines you can run 1531
arc.

34

API Clients To Talk To Servers

It brings up an app like this.

= ARC

HTTP request
Socket

History

Send a request and recall it from here

Once you made a request it will appear in this place.

Saved

Save a request and recall it from here

Use ctrl+s to save a request. It will appear in this
place.

Install new ARC with new features!

Request

Method

GET Request URL

An URL is required.

Parameters

Headers

|_D £ » Toggle source mode -|— nsert headers set

Header name Header value

ADD HEADER

Variables

A, Headers are valid

Headers size: bytes

Selected environment: Default

35

API Clients To Talk To Servers

Web browsers always make a get request to a server, but this is what allows us to make
post requests.

HTTP Crud Methods

get and post aren't the only types of requests we can send servers...

All The HTTP Methods

These are the remaining methods. They each have their own meaning about what the
underlying action does.

Method Operation
POST Create
GET Read

PUT Update
DELETE | Delete

All The HTTP Methods

These are the remaining methods. They each have their own meaning about what the

underlying action does.

Method Operation req.params reqg.query req.body Response
POST | Create v X v res.json()
GET Read v v) 4 res.json()
PUT Update v) 4 v res.json()
DELETE | Delete v v % res.json()

40

All The HTTP Methods

Well not quite all...

Top 9 HTTP Request Methods

f) ByteByteGo

PUT 4] [PosT |&F

roducts/iphone PUT /vilusers/123 '

Request Body
-

Update an item Create an item

DELETE {j [PATCH &2 HEAD ;2

DELETE /v1/users/123 PATCH /v1/users/123 HEAD /v1/products/iphone

Request Body ‘Response
-

Delete an item modify an item

CONNECT |2 “OPTIONS TH
 CONNECT xxx.com:80 OPTIONS | |

W Resoonse

41

A\

What you're actually seeing is the building blocks of an API...

LX)

API

An API (Application Programming Interface) refers to an interface exposed by a particular
piece of software.

The most common usage of "API" is for Web APIs, which refer to a "contract" that a
particular service provides. The interface of the service acts as a black box and indicates
that for particular endpoints, and given particular input, the client can expect to receive

particular output.

44

Web API

Load Webpage (standard request)

Page loaded

Get extra data
Browser >

(—
Receive extra data

(Client)

Submit form data

>
SrLeiiciiiis il e e

Form submission confirmed

RESTful API

A RESTful APl is an application program interface (API) that uses HTTP requests to GET,
PUT, POST and DELETE data. These 4 methods describe the "nature" of different API
requests.

46

Requests Made Via Code

We don't need an API client to send requests to servers, we can actually send requests
via code!

48

Requests Library

We can use an npm package sync-request-curl to allow us to programatically send
RESTful APl requests. npm install sync-request-curl.

We can send them to our previous server.

1 import request from 'sync-request-curl';
2

3 const res = request(

4 'GET',

5 "http://localhost:3001/apple’,
6 {

7 gs: {

8 name: 'Hayden',

9 }

10 }

11),

12

13 console.log(JSON.parse(String(res.getBody())));

requests.ts

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.ts

49

Requests Library

We can use an npm package sync-request-curl to allow us to programatically send
RESTful APl requests. npm install sync-request-curl.

We can send them to our previous server.

1 import request from 'sync-request-curl';
2

3 const res = request(

4 'GET',

5 "http://localhost:3001/apple’,
6 {

7 gs: {

8 name: 'Hayden',

9)

10 }

11),

12

13 console.log(JSON.parse(String(res.getBody())));

requests.ts

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.ts

Let's see what we can do with this...

49

co~NO OGS WNRE

31
32
33
34

Working With jest

import request from 'sync-request';
function get(route: string, gs: any) {
const res = request(
'GET',
“http://localhost:3001%{route} ",
{
gs: gs,
b
)
return JSON.parse(String(res.getBody()));
}
describe('Test Apple', () => {

test('If it returns a name string successfully', () => {
const bodyObj = get('/apple', {
name: 'Hayden',
1)
expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending apple!');
3);
1)
describe('Test Orange', () => {

test('If it returns a name string successfully', () => {
const res = request(
'"POST',
"http://localhost:3001/orange’,
{
json: { name: 'Hayden' },
}
)i
const bodyObj = JSON.parse(String(res.getBody()));
expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending orange!');
1)
1)

requests.test.ts

51

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.test.ts

How To Wrap Into Project

In general, iteration 2 requires that you implement an HTTP server. However! Many of
the routes that exist in iteration 2 are just wrappers of your iteration 1 functions.

Therefore it should be easy to "wrap" your iteration 1 functions with an HTTP server. I.E.
Most of the "server" stuff you'll dois just routing, gathering bodies, and returning
responses, while treating your iteration 1 functions like blackboxes.

52

Returning Errors

Restful APIs can also return errors:

import express from 'express';

const app = express();
const port = 3001;

app.use(express.text());

00O ~NO Ol WDN R

app.get('/apple/:name', (req, res) => {
const name = req.params.name;

10 if (name === 'Hayden') {

11 res.status(400).json({

12 error: 'Bad name',

13 1)

14 } else {

15 res.json({

16 msg: "Hi ${name}, thanks for sending apple!’,

17 1)

18 }

19 });

20

21 app.listen(port, () => {

22 console.log(Listening on port ${port}’);

23 });

©

error.ts

http://teaching.bitflip.com.au/code/1531/24T1/4.2/error.ts

Other Express Helpers

Sometimes we put version numbers in our routes to help us keep track, e.g.:

e /vl/names/list
e /v2/names/list
e /v3/names/list

You will work with this principle in your major project.

56

Other Express Helpers

Final note - remember that routes will be "checked" in order of definition to see which
one is most applicable for a particular call.

This means for wildcard routes we need to be careful about their position, e.g.

e /game/:1tem
e /game

will give us problems.

57

Other - Token Encoding

A token is generally stringified for sending over HTTP - since everything over an HTTP
request needs to be stringified. This is typically done with JSON.

If you pass a JSONified object (as opposed to just a string or a number) as a token, we
recommend that you use encodeURIComponent and decodeURIComponent to encode it
to be friendly for transfer over URLs.

59

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent

Other - General Standards Standards

Not all applications follow the CRUD / Restful standard explicitly. Let's discuss two quick
examples:

e Ignoring side effects to avoid everything being POST
e Sometimes 403/404's are returned in place of 400 to avoid fuzzing attacks

60

Optional! Making Life Easier.

Did you know we can make node auto restart if new files are compiled?
If we:

e Runnpm install --save-dev nodemon
e Replace node with nodemon in package. tson

Thenrunnpm run startinaseparate terminal.

62

Optional! Making Life Easier.

Did you know we can make tsc auto run if source files are changed?
If we:
e Add - -watch flagto tsc command

Thenrunnpm run tscinaseparate terminal.

63

API Vs SDK

API Vs SDK @ blog.bytebytego.com

Ap' - (To communicate between Apps / Services)

API REQUEST STRUCTURE

HTTP METHOD END POINT QUERY PARAMETERS
GET / POST / URL (where what You're
PUT / DELETE APl Hosted) Looking at?
GET https://gmap.com/json
- Query Parameters:

- address=ABC+CA
- Key=APP_API_KEY Request

_._1 -------------- >

-<

Delivery i Locations
APP Data

Status Code

SDK ' i (Tool8ox to Build Apps) Code APIS Libs

i[C)
Developers
Programming
language

-

LA

Locations
Data

Delivery Web API
App

65

Feedback

Or go to the form here.

https://docs.google.com/forms/d/e/1FAIpQLSf6fPgHh1_5ggDHp964DPlcyfrqZUjny4UB2_ITJRbkQDQ2kw/viewform

