
COMP1531
📚 Full-Stack - HTTP Servers

Lecture 4.2

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/1531/24T1/4.2-http-server.pdf

In This Lecture

Why? 🤔
Web servers are fundamental part of web-based full-stack software

What? 📰
Networks
Express Server
APIs
Crud

2

🌐 Networks
Network: A group of interconnected computers that can communicate
Internet: A global infrastructure for networking computers around the entire world
together
World Wide Web: A system of documents and resources linked together, accessible via
URLs

Network

Internet

Web

4

🌐 Networks
If you want to learn more about networking, go and study COMP3331.

5

🌐 Network Protocols
Communication over networks must have a certain "structure" so everyone can
understand.
Humans do this all the time - waving, handshakes, clapping. Standard operation
procedure that structures how we share info.
Different "structures" (protocols) are used for different types of communication.

7

🌐 Network Protocols

HTTP is an example of one of the protocols. It is the protocol of the web. The primary
protocol you use to access URLs in your web browser.

source

8

https://i.ytimg.com/vi/TMVVjOAw7HE/maxresdefault.jpg

🌐 Network Protocols
Examples

9

🌐 Network Protocols
Examples

10

🕸 HTTP
HTTP: Hypertext Transfer Protocol

I.E. Protocol for sending and receiving HTML documents (nowadays much more)

Web Browsers (Client)

➡️
⬅️

Web Servers

Web browsers are applications to request and receive HTTP.

12

🍕 NodeJS Express Server
A very popular npm library exists to allow you to run your own HTTP server with NodeJS.

It's called .Express Server

14

https://expressjs.com/en/starter/hello-world.html

🍕 NodeJS Express Server
import express from 'express';

const app = express();
const port = 3000;

app.use(express.text());

app.get('/hello', (req, res) => {
 res.send('Hello!');
});

app.get('/whats/up', (req, res) => {
 res.send(JSON.stringify({
 value: 'not much',
 }));
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

express_basic.ts

15

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

🍕 NodeJS Express Server

This is us importing the express library

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7
app.get('/hello', (req, res) => {8
 res.send('Hello!');9
});10
 11
app.get('/whats/up', (req, res) => {12
 res.send(JSON.stringify({13
 value: 'not much',14
 }));15
});16
 17
app.listen(port, () => {18
 console.log(`Listening on port ${port}`);19
});20

express_basic.ts

16

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

🍕 NodeJS Express Server

This creates an instance of a server, and we define the network port to run on. A port is
essentially one of the roads in and out of a computer's network.

.

const app = express();
const port = 3000;

import express from 'express';1
 2

3
4

 5
app.use(express.text());6
 7
app.get('/hello', (req, res) => {8
 res.send('Hello!');9
});10
 11
app.get('/whats/up', (req, res) => {12
 res.send(JSON.stringify({13
 value: 'not much',14
 }));15
});16
 17
app.listen(port, () => {18
 console.log(`Listening on port ${port}`);19
});20

express_basic.ts

There are often 65,000-
ish

17

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts
https://twitter.com/linuxhandbook/status/1509888564833800200

🍕 NodeJS Express Server

This line is a quirk of express that is required in order for the data of many requests to
be interpreted.

app.use(express.text());

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5

6
 7
app.get('/hello', (req, res) => {8
 res.send('Hello!');9
});10
 11
app.get('/whats/up', (req, res) => {12
 res.send(JSON.stringify({13
 value: 'not much',14
 }));15
});16
 17
app.listen(port, () => {18
 console.log(`Listening on port ${port}`);19
});20

express_basic.ts

18

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

🍕 NodeJS Express Server

This says that "when URL / is accessed, call this function". The function sends some text
to the person accessing that URL.

If we want our server to do more, we need to write lots more.

app.get('/hello', (req, res) => {
 res.send('Hello!');
});

app.get('/whats/up', (req, res) => {
 res.send(JSON.stringify({
 value: 'not much',
 }));
});

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7

8
9
10
11
12
13
14
15
16

 17
app.listen(port, () => {18
 console.log(`Listening on port ${port}`);19
});20

express_basic.ts

19

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

🍕 NodeJS Express Server

This line actually starts the server (on a particular port). It essentially runs an infinite
loop so the program runs forever constantly waiting for new people to "access" it via a

certain URL.

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.text());6
 7
app.get('/hello', (req, res) => {8
 res.send('Hello!');9
});10
 11
app.get('/whats/up', (req, res) => {12
 res.send(JSON.stringify({13
 value: 'not much',14
 }));15
});16
 17

18
19
20

express_basic.ts

20

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_basic.ts

🧑‍💻 What Servers Are Used For
In the past, servers were just used to serve files back to client's browsers.

Nowadays, they're used to quietly exchange large amounts of information back and forth
between client and server behind the scenes. Often this happens whilst the server is

acting as an API.

This is probably done by sending JSON instead of text/HTML.

21

🎊 Servers Often Respond With JSON

We can send javascript objects as JSON.

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

app.get('/whats/up', (req, res) => {
 res.json({
 value: 'not much',
 });
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

express_json.ts

23

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_json.ts

🎊 Servers Often Respond With JSON

We can send javascript objects as JSON.

app.use(express.json());

 res.json({

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5

6
 7
app.get('/whats/up', (req, res) => {8

9
 value: 'not much',10
 });11
});12
 13
app.listen(port, () => {14
 console.log(`Listening on port ${port}`);15
});16

express_json.ts

24

http://teaching.bitflip.com.au/code/1531/24T1/4.2/express_json.ts

🎨 How Servers Receive Information

Servers can receive information through the URL. This is called the query data.

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

app.get('/my/url', (req, res) => {
 const name = req.query.name;
 const age = req.query.age;
 res.json({
 name: `Name is ${name}`,
 age: `Age is ${age}`,
 });
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

input_query.ts

26

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_query.ts

🎨 How Servers Receive Information

Servers can receive information through the URL. This is called the query data.

 const name = req.query.name;
 const age = req.query.age;

 name: `Name is ${name}`,
 age: `Age is ${age}`,

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.json());6
 7
app.get('/my/url', (req, res) => {8

9
10

 res.json({11
12
13

 });14
});15
 16
app.listen(port, () => {17
 console.log(`Listening on port ${port}`);18
});19

input_query.ts

27

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_query.ts

🎨 How Servers Receive Information

Servers can receive information through the URL. This is called the params data.

import express from 'express';

const app = express();
const port = 3000;

app.use(express.json());

app.get('/my/url/:name', (req, res) => {
 const name = req.params.name;
 res.json({
 name: `Name is ${name}`,
 });
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

input_params.ts

28

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_params.ts

🎨 How Servers Receive Information

Servers can receive information through the URL. This is called the params data.

app.get('/my/url/:name', (req, res) => {
 const name = req.params.name;

 name: `Name is ${name}`,

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.json());6
 7

8
9

 res.json({10
11

 });12
});13
 14
app.listen(port, () => {15
 console.log(`Listening on port ${port}`);16
});17

input_params.ts

29

http://teaching.bitflip.com.au/code/1531/24T1/4.2/input_params.ts

👀 Alterantives To app.get
We actually have an alternative to app.get called app.post which is where we send

information through a body and not over the URL.

app.post('/hello', (req, res) => {
 const name = req.query.body;

import express from 'express';1
 2
const app = express();3
const port = 3000;4
 5
app.use(express.json());6
 7

8
9

 res.json({10
 name: `Name is ${name}`,11
 });12
});13
 14
app.listen(port, () => {15
 console.log(`Listening on port ${port}`);16
});17

post_example.ts

31

http://teaching.bitflip.com.au/code/1531/24T1/4.2/post_example.ts

👀 Alterantives To app.get
Sure, but we can't call this in the browser anymore? How can we talk to it?

32

🔊 API Clients To Talk To Servers
We can use API clients to talk to servers.

Locally you can install "Advanced Rest Client" or on the CSE machines you can run 1531
arc.

34

🔊 API Clients To Talk To Servers
It brings up an app like this.

35

🔊 API Clients To Talk To Servers
Web browsers always make a get request to a server, but this is what allows us to make

post requests.

36

🥦 HTTP Crud Methods
get and post aren't the only types of requests we can send servers...

38

🥦 All The HTTP Methods
These are the remaining methods. They each have their own meaning about what the

underlying action does.

Method Operation

POST Create

GET Read

PUT Update

DELETE Delete

39

🥦 All The HTTP Methods
These are the remaining methods. They each have their own meaning about what the

underlying action does.

Method Operation req.params req.query req.body Response

POST Create ✅ ❌ ✅ res.json()

GET Read ✅ ✅ ❌ res.json()

PUT Update ✅ ❌ ✅ res.json()

DELETE Delete ✅ ✅ ❌ res.json()

40

🥦 All The HTTP Methods
Well not quite all...

41

🪟 API
What you're actually seeing is the building blocks of an API...

43

🪟 API
An API (Application Programming Interface) refers to an interface exposed by a particular

piece of software.

The most common usage of "API" is for Web APIs, which refer to a "contract" that a
particular service provides. The interface of the service acts as a black box and indicates
that for particular endpoints, and given particular input, the client can expect to receive

particular output.

44

🪟 Web API

45

🪟 RESTful API
A RESTful API is an application program interface (API) that uses HTTP requests to GET,

PUT, POST and DELETE data. These 4 methods describe the "nature" of different API
requests.

46

🔊 Requests Made Via Code
We don't need an API client to send requests to servers, we can actually send requests

via code!

48

🔊 Requests Library
We can use an npm package sync-request-curl to allow us to programatically send

RESTful API requests. npm install sync-request-curl.

We can send them to our previous server.

import request from 'sync-request-curl';

const res = request(
 'GET',
 'http://localhost:3001/apple',
 {
 qs: {
 name: 'Hayden',
 }
 }
);

console.log(JSON.parse(String(res.getBody())));

1
2
3
4
5
6
7
8
9
10
11
12
13

requests.ts

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.ts

49

🔊 Requests Library
We can use an npm package sync-request-curl to allow us to programatically send

RESTful API requests. npm install sync-request-curl.

We can send them to our previous server.

import request from 'sync-request-curl';

const res = request(
 'GET',
 'http://localhost:3001/apple',
 {
 qs: {
 name: 'Hayden',
 }
 }
);

console.log(JSON.parse(String(res.getBody())));

1
2
3
4
5
6
7
8
9
10
11
12
13

requests.ts

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.ts

Let's see what we can do with this...

49

🍅 Working With jest
import request from 'sync-request';

function get(route: string, qs: any) {
 const res = request(
 'GET',
 `http://localhost:3001${route}`,
 {
 qs: qs,
 }
);
 return JSON.parse(String(res.getBody()));
}

describe('Test Apple', () => {
 test('If it returns a name string successfully', () => {
 const bodyObj = get('/apple', {
 name: 'Hayden',
 });
 expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending apple!');
 });
});
describe('Test Orange', () => {
 test('If it returns a name string successfully', () => {
 const res = request(
 'POST',
 'http://localhost:3001/orange',
 {
 json: { name: 'Hayden' },
 }
);
 const bodyObj = JSON.parse(String(res.getBody()));
 expect(bodyObj.msg).toBe('Hi Hayden, thanks for sending orange!');
 });
});

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

requests.test.ts
51

http://teaching.bitflip.com.au/code/1531/24T1/4.2/requests.test.ts

🤗 How To Wrap Into Project
In general, iteration 2 requires that you implement an HTTP server. However! Many of

the routes that exist in iteration 2 are just wrappers of your iteration 1 functions.

Therefore it should be easy to "wrap" your iteration 1 functions with an HTTP server. I.E.
Most of the "server" stuff you'll do is just routing, gathering bodies, and returning

responses, while treating your iteration 1 functions like blackboxes.

52

⚠️ Returning Errors
Restful APIs can also return errors:

import express from 'express';

const app = express();
const port = 3001;

app.use(express.text());

app.get('/apple/:name', (req, res) => {
 const name = req.params.name;
 if (name === 'Hayden') {
 res.status(400).json({
 error: 'Bad name',
 });
 } else {
 res.json({
 msg: `Hi ${name}, thanks for sending apple!`,
 });
 }
});

app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

error.ts

54

http://teaching.bitflip.com.au/code/1531/24T1/4.2/error.ts

🍊 Other Express Helpers
Sometimes we put version numbers in our routes to help us keep track, e.g.:

/v1/names/list
/v2/names/list
/v3/names/list

You will work with this principle in your major project.

56

🍊 Other Express Helpers
Final note - remember that routes will be "checked" in order of definition to see which

one is most applicable for a particular call.

This means for wildcard routes we need to be careful about their position, e.g.

/game/:item

/game

will give us problems.

57

⛑️ Other - Token Encoding
A token is generally stringified for sending over HTTP - since everything over an HTTP

request needs to be stringified. This is typically done with JSON.

If you pass a JSONified object (as opposed to just a string or a number) as a token, we
recommend that you use and to encode it

to be friendly for transfer over URLs.
encodeURIComponent decodeURIComponent

59

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent

⛑️ Other - General Standards Standards
Not all applications follow the CRUD / Restful standard explicitly. Let's discuss two quick

examples:

Ignoring side effects to avoid everything being POST
Sometimes 403/404's are returned in place of 400 to avoid fuzzing attacks

60

🎁 Optional! Making Life Easier.
Did you know we can make node auto restart if new files are compiled?

If we:

Run npm install --save-dev nodemon
Replace node with nodemon in package.tson

Then run npm run start in a separate terminal.

62

🎁 Optional! Making Life Easier.
Did you know we can make tsc auto run if source files are changed?

If we:

Add --watch flag to tsc command

Then run npm run tsc in a separate terminal.

63

🥷 API Vs SDK

65

👂🏼Feedback

Or go to the .form here

66

https://docs.google.com/forms/d/e/1FAIpQLSf6fPgHh1_5ggDHp964DPlcyfrqZUjny4UB2_ITJRbkQDQ2kw/viewform

