
COMP6771
🍓 STL Containers

Lecture 2.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/24T2/2.1-stl-containers.pdf

⚖ STL: Standard Template Library
STL is an architecture and design philosophy for managing generic and abstract
collections of data with algorithms
All components of the STL are templates
Containers store data, but don't know about algorithms
Iterators are an API to access items within a container in a particular order, agnostic of
the container used

Each container has its own iterator types
Algorithms manipulate values referenced by iterators, but don't know about
containers

3

� Basic Container Iteration
#include <array>
#include <iostream>

int main()
{
 // C-style. Don't do this
 // int ages[3] = { 18, 19, 20 };
 // for (int i = 0; i < 3; ++i) {
 // std::cout << ages[i] << "\n";
 // }

 // C++ style. This can be used like any other C++ container.
 // It has iterators, safe accesses, and it doesn't act like a pointer.
 std::array<int, 3> ages { 18, 19, 20 };

 for (unsigned int i = 0; i < ages.size(); ++i) {
 std::cout << ages[i] << "\n";
 }
 for (auto it = ages.begin(); it != ages.end(); ++it) {
 std::cout << *it << "\n";
 }
 for (const auto& age : ages) {
 std::cout << age << "\n";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

vector-iterate.cpp

5

http://teaching.bitflip.com.au/code/6771/24T2/2.1/vector-iterate.cpp

📦 Sequential Containers
Organises a finite set of objects into a strict linear arrangement.

Dynamically-sized array

Fixed-size array

Double-ended queue

Singly-linked list

Doubly-linked list

We will explore these in greater detail in Week 10.

It won't be necessary to use anything other than std::vector in COMP6771.

std::vector

std::array

std::deque

std::forward_list

std::list

7

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/list

📦 Sequential Containers
<vector>: Most commonly used array-like container

Abstract, dynamically-resizable array
In lalter weeks we will learn about various ways to construct a vector

#include <iostream>
#include <vector>

// Begin with numbers 1, 2, 3 in the list already
int main()
{
 // In C++17 we can omit the int if the compiler can determine the type.
 std::vector<int> numbers { 1, 2, 3 };
 int input;
 while (std::cin >> input) {
 numbers.push_back(input);
 }
 std::cout << "1st element: " << numbers.at(0) << "\n"; // slower, safer
 std::cout << "2nd element: " << numbers[1] << "\n"; // faster, less safe
 std::cout << "Max size before realloc: " << numbers.capacity() << "\n";
 for (int n : numbers) {
 std::cout << n << "\n";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

vector-object.cpp

8

http://teaching.bitflip.com.au/code/6771/24T2/2.1/vector-object.cpp

📕 Ordered Associative Containers
Organises a finite set of objects into a strict linear arrangement.

A collection of unique keys

A collection of keys

Associative array that map a unique keys to values

Associative array where one key may map to many values

They are mostly interface-compatible with the unordered associative containers.

std::set

std::multiset

std::map

std::multimap

10

https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap

📕 Ordered Associative Containers
std::map example

#include <iostream>
#include <map>
#include <string>

int main()
{
 std::map<std::string, double> m;
 // The insert function takes in a key-value pair.
 std::pair<std::string, double> p1 { "bat", 14.75 };
 m.insert(p1);
 // The compiler will automatically construct values as
 // required when it knows the required type.
 m.insert({ "cat", 10.157 });
 // This is the preferred way of using a map
 m.emplace("cat", 10.157);

 // This is very dangerous, and one of the most common causes of mistakes in C++.
 std::cout << m["bat"] << '\n';

 auto it = m.find("bat"); // Iterator to bat if present, otherwise m.end()
 (void)it;

 // This is a great example of when to use auto, but we want to show you what type it is.
 for (const std::pair<const std::string, double>& kv : m) {
 std::cout << kv.first << ' ' << kv.second << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

map-container.cpp

11

http://teaching.bitflip.com.au/code/6771/24T2/2.1/map-container.cpp

🧩 Unordered Associative Containers
Provide fast retrieval of data based on keys. The keys are hashed.

A collection of unique keys

Associative array that map unique keys to a values

std::unordered_set

std::unordered_map

13

https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_map

🚄 Container Performance
Performance still matters
STL containers are abstractions of common data structures
cppreference has a summary of them here.
Different containers have different time complexity of the same operation (see right)

15

🚄 Container Performance

O(1)+ means amortised constant time

16

�Feedback

Or go to the .form here

17

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

