COMP6TT71

STL Containers

Lecture 2.1

Author(s): Hayden Smith

(Download as PDF)



http://teaching.bitflip.com.au/6771/24T2/2.1-stl-containers.pdf

STL: Standard Template Library

e STLis an architecture and design philosophy for managing generic and abstract
collections of data with algorithms

e All components of the STL are templates

e Containers store data, but don't know about algorithms

e |terators are an API to access items within a container in a particular order, agnostic of
the container used
= Each container has its own iterator types

o Algorithms manipulate values referenced by iterators, but don't know about
containers




Basic Container lteration

1 #include <array>
2 #include <iostream>

&

4 int main()

5 {

6 // C-style. Don't do this

7 // int ages[3] = { 18, 19, 20 };

8 // for (int 1 = 0; i < 3; ++1) {

9 // std::cout << ages[i] << "\n";

10 // %}

11

12 // C++ style. This can be used like any other C++ container.
13 // It has iterators, safe accesses, and it doesn't act like a pointer.
14 std::array<int, 3> ages { 18, 19, 20 };

15

16 for (unsigned int i = 0; i < ages.size(); ++i) {

17 std::cout << ages[i] << "\n";

18 }

19 for (auto it = ages.begin(); it != ages.end(); ++it) {
20 std::cout << *it << "\n'";

21 }

22 for (const auto& age : ages) {

23 std::cout << age << "\n";

24 }

25 }

vector-iterate.cpp



http://teaching.bitflip.com.au/code/6771/24T2/2.1/vector-iterate.cpp

Sequential Containers

Organises a finite set of objects into a strict linear arrangement.

std: :vector Dynamically-sized array
std: :array Fixed-size array
std: :deque Double-ended queue

std::forward_list | Singly-linked list
std::1list Doubly-linked list

We will explore these in greater detail in Week 10.

It won't be necessary to use anything other than std: :vector in COMP6771.



https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/list

Sequential Containers

<vector>: Most commonly used array-like container

e Abstract, dynamically-resizable array
e |n lalter weeks we will learn about various ways to construct a vector

1 #include <iostream>

2 #include <vector>

3

4 // Begin with numbers 1, 2, 3 in the list already
5 int main()

6 {

7 // In C++17 we can omit the int if the compiler can determine the type.
8 std: :vector<int> numbers { 1, 2, 3 };

9 int input;

10 while (std::cin >> input) {

11 numbers.push_back(input);

12 }

13 std::cout << "1st element: " << numbers.at(0) << "\n"; // slower, safer
14 std::cout << "2nd element: " << numbers[1] << "\n"; // faster, less safe
15 std::cout << "Max size before realloc: " << numbers.capacity() << "\n";
16 for (int n : numbers) {

17 std::cout << n << "\n";

18 }

19 }

vector-object.cpp



http://teaching.bitflip.com.au/code/6771/24T2/2.1/vector-object.cpp

Ordered Associative Containers

Organises a finite set of objects into a strict linear arrangement.

std: :set A collection of unique keys

std::multiset | Acollection of keys

std: :map Associative array that map a unique keys to values

std: :multimap | Associative array where one key may map to many values

They are mostly interface-compatible with the unordered associative containers.

10



https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap

Ordered Associative Containers

std: :map example

1 #include <iostream>
2 #include <map>
3 #include <string>

4

5 int main()

6 {
-,
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

std: :map<std::string, double> m;

// The insert function takes in a key-value pair.
std::pair<std::string, double> p1 { "bat", 14.75 };
m.insert(pl);

// The compiler will automatically construct values as
// required when it knows the required type.
m.insert({ "cat", 10.157 });

// This is the preferred way of using a map
m.emplace("cat", 10.157);

// This 1is very dangerous, and one of the most common causes of mistakes in C++.
std::cout << m["bat"] << '\n';

auto it = m.find("bat"); // Iterator to bat if present, otherwise m.end()
(void)it;

// This is a great example of when to use auto, but we want to show you what type it is.
for (const std::pair<const std::string, double>& kv : m) {
std::cout << kv.first << ' ' << kv.second << '\n';

}

map-container.cpp

11



http://teaching.bitflip.com.au/code/6771/24T2/2.1/map-container.cpp

Unordered Associative Containers

Provide fast retrieval of data based on keys. The keys are hashed.

std: :unordered_set

A collection of unique keys

std: :unordered_map

Associative array that map unique keys to a values

13



https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_map

Container Performance

Performance still matters

STL containers are abstractions of common data structures

cppreference has a summary of them here.

Different containers have different time complexity of the same operation (see right)

15




Container Performance

Operation vector | list queue

container()
container(size)
operator[]()
operator—(container)
at(int)

size()

resize()

capacity()
erase(iterator)
front()
insert(iterator, value)
pop_back()
pop_front()
push_back(value)
push_front(value)
begin()

end()

O(1)+ means amortised constant time

16




Feedback

. EIEF'
-

T _j.l.
E-I'I :I.

Or go to the form here.

mll

o



https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform




