
COMP6771
🫐 Exceptions

Lecture 5.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/24T2/5.1-exceptions.pdf

In This Lecture

Why? 🤔
Sometimes our programs need to deal with unexpected runtime errors and handle
them gracefully

What? 📰
Exception object
Throwing and catching exceptions
Rethrowing
noexcept

2

🚎 Explore An Example
What does this produce?

#include <iostream>
#include <vector>

auto main() -> int
{
 std::cout << "Enter -1 to quit\n";
 std::vector<int> items { 97, 84, 72, 65 };
 std::cout << "Enter an index: ";
 for (int print_index; std::cin >> print_index;) {
 if (print_index == -1)
 break;
 std::cout << items.at(static_cast<unsigned int>(print_index)) << '\n';
 std::cout << "Enter an index: ";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exception1.cpp

4

http://teaching.bitflip.com.au/code/6771/24T2/5.1/exception1.cpp

🚎 Explore An Example
Now we use exceptions instead

#include <iostream>
#include <vector>

auto main() -> int
{
 std::cout << "Enter -1 to quit\n";
 std::vector<int> items { 97, 84, 72, 65 };
 std::cout << "Enter an index: ";
 for (int print_index; std::cin >> print_index;) {
 if (print_index == -1)
 break;
 try {
 std::cout << items.at(static_cast<unsigned int>(print_index)) << '\n';
 items.resize(items.size() + 10);
 } catch (const std::out_of_range& e) {
 std::cout << "Index out of bounds\n";
 } catch (...) {
 std::cout << "Something else happened";
 }
 std::cout << "Enter an index: ";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

exception2.cpp

5

http://teaching.bitflip.com.au/code/6771/24T2/5.1/exception2.cpp

🚎 Explore An Example
Let's take a step back and unpack what we just saw...

6

🔥 Exceptions: What & Why?
What:

Exceptions: Are for exceptional circumstances
Happen during run-time anomalies (things not going to plan A!)

Exception handling:
Run-time mechanism
C++ detects a run-time error and raises an appropriate exception
Another unrelated part of code catches the exception, handles it, and potentially
rethrows it

Why:
Allows us to gracefully and programmatically deal with anomalies, as opposed to
our program crashing.

8

🎁 What Are "Exception Objects"
Any type we derive from std::exception
throw std::out_of_range("Exception!");

throw std::bad_alloc("Exception!");

Why std::exception? Why classes?
#include <exception> for std::exception object
#include <stdexcept> for objects that inherit std::exception

https://en.cppreference.com/w/cpp/error/exception
https://stackoverflow.com/questions/25163105/stdexcept-vs-exception-headers-in-c

10

https://en.cppreference.com/w/cpp/error/exception
https://stackoverflow.com/questions/25163105/stdexcept-vs-exception-headers-in-c

🥢 Conceptual Structure
Exceptions are treated like lvalues
Limited type conversions exist (pay attention to them):

nonconst to const
other conversions we will not cover in the course

try {
 // Code that may throw an exception
} catch (/* exception type */) {
 // Do something with the exception
} catch (...) { // any exception
 // Do something with the exception
}

1
2
3
4
5
6
7

https://en.cppreference.com/w/cpp/language/try_catch

12

https://en.cppreference.com/w/cpp/language/try_catch

🥢 Multiple Catch Options
This does not mean multiple catches will happen, but rather that multiple options are

possible for a single catch

#include <iostream>
#include <vector>

auto main() -> int
{
 auto items = std::vector<int> {};
 try {
 items.resize(items.max_size() + 1);
 } catch (std::bad_alloc& e) {
 std::cout << "Out of bounds.\n";
 } catch (std::exception&) {
 std::cout << "General exception.\n";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

multiple.cpp

13

http://teaching.bitflip.com.au/code/6771/24T2/5.1/multiple.cpp

🤾‍♀️ Rethrow
When an exception is caught, by default the catch will be the only part of the code to
use/action the exception
What if other catches (lower in the precedence order) want to do something with the
thrown exception?

try {
 try {
 try {
 throw T{};
 } catch (T& e1) {
 std::cout << "Caught\n";
 throw;
 }
 } catch (T& e2) {
 std::cout << "Caught too!\n";
 throw;
 }
} catch (...) {
 std::cout << "Caught too!!\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

15

🥅 Catching The Right Way
Throw by value, catch by const reference
Ways to catch exceptions:

By value (no!)
By pointer (no!)
By reference (yes)

References are preferred because:
more efficient, less copying (exploring today)
no slicing problem (related to polymorphism, exploring later)

17

🥅 Exploring Catch By Value
#include <iostream>

class Giraffe {
public:
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }
 Giraffe(const Giraffe& g) { (void) g; std::cout << "Giraffe copy-constructed" << '\n'; }
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }
};

void zebra()
{
 throw Giraffe {};
}

void llama()
{
 try {
 zebra();
 } catch (Giraffe g) {
 (void) g;
 std::cout << "caught in llama; rethrow" << '\n';
 throw;
 }
}

int main()
{
 try {
 llama();
 } catch (Giraffe g) {
 (void) g;
 std::cout << "caught in main" << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

by-value.cpp

18

http://teaching.bitflip.com.au/code/6771/24T2/5.1/by-value.cpp

🥅 Exploring Catch By Value

 } catch (Giraffe g) {

 } catch (Giraffe g) {

#include <iostream>1
 2
class Giraffe {3
public:4
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }5
 Giraffe(const Giraffe& g) { (void) g; std::cout << "Giraffe copy-constructed" << '\n'; }6
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }7
};8
 9
void zebra()10
{11
 throw Giraffe {};12
}13
 14
void llama()15
{16
 try {17
 zebra();18

19
 (void) g;20
 std::cout << "caught in llama; rethrow" << '\n';21
 throw;22
 }23
}24
 25
int main()26
{27
 try {28
 llama();29

30
 (void) g;31
 std::cout << "caught in main" << '\n';32
 }33
}34

by-value.cpp

19

http://teaching.bitflip.com.au/code/6771/24T2/5.1/by-value.cpp

🥅 Exploring Catch By Reference
#include <iostream>

class Giraffe {
public:
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }
 Giraffe(const Giraffe& g) { (void) g; std::cout << "Giraffe copy-constructed" << '\n'; }
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }
};

void zebra()
{
 throw Giraffe {};
}

void llama()
{
 try {
 zebra();
 } catch (const Giraffe& g) {
 (void) g;
 std::cout << "caught in llama; rethrow" << '\n';
 throw;
 }
}

int main()
{
 try {
 llama();
 } catch (const Giraffe& g) {
 (void) g;
 std::cout << "caught in main" << '\n';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

by-ref.cpp

20

http://teaching.bitflip.com.au/code/6771/24T2/5.1/by-ref.cpp

🥅 Exploring Catch By Reference

 } catch (const Giraffe& g) {

 } catch (const Giraffe& g) {

#include <iostream>1
 2
class Giraffe {3
public:4
 Giraffe() { std::cout << "Giraffe constructed" << '\n'; }5
 Giraffe(const Giraffe& g) { (void) g; std::cout << "Giraffe copy-constructed" << '\n'; }6
 ~Giraffe() { std::cout << "Giraffe destructed" << '\n'; }7
};8
 9
void zebra()10
{11
 throw Giraffe {};12
}13
 14
void llama()15
{16
 try {17
 zebra();18

19
 (void) g;20
 std::cout << "caught in llama; rethrow" << '\n';21
 throw;22
 }23
}24
 25
int main()26
{27
 try {28
 llama();29

30
 (void) g;31
 std::cout << "caught in main" << '\n';32
 }33
}34

by-ref.cpp

21

http://teaching.bitflip.com.au/code/6771/24T2/5.1/by-ref.cpp

🦺 Exception Safety Levels
This part is not specific to C++
Operations performed have various levels of safety

No-throw (failure transparency)
Strong exception safety (commit-or-rollback)
Weak exception safety (no-leak)
No exception safety

23

🦺 No-Throw Guarantee
Also known as failure transparency
Operations are guaranteed to succeed, even in exceptional circumstances

Exceptions may occur, but are handled internally
No exceptions are visible to the client
This is the same, for all intents and purposes, as noexcept in C++
Examples:

Closing a file
Freeing memory
Anything done in constructors or moves (usually)
Creating a trivial object on the stack (made up of only ints)

24

🦺 No-Throw Guarantee
The noexcept specifier

Specifies whether a function could potentially throw
It doesn't not actually prevent a function from throwing an exception
https://en.cppreference.com/w/cpp/language/noexcept_spec
STL functions can operate more efficiently on noexcept functions

class S {
 public:
 int foo() const; // may throw
}

class S {
 public:
 int foo() const noexcept; // does not throw
}

1
2
3
4
5
6
7
8
9

25

🦺 Strong Exception Safety
Also known as "commit or rollback" semantics
Operations can fail, but failed operations are guaranteed to have no visible effects
Probably the most common level of exception safety for types in C++
All your copy-constructors should generally follow these semantics
Similar for copy-assignment

Copy-and-swap idiom (usually) follows these semantics (why?)
Can be difficult when manually writing copy-assignment

26

🦺 Strong Exception Safety
To achieve strong exception safety, you need to:

First perform any operations that may throw, but don't do anything irreversible
Then perform any operations that are irreversible, but don't throw

27

🦺 Basic Exception Safety
This is known as the no-leak guarantee
Partial execution of failed operations can cause side effects, but:

All invariants must be preserved
No resources are leaked

Any stored data will contain valid values, even if it was different now from before the
exception

Does this sound familiar? A "valid, but unspecified state"
Move constructors that are not noexcept follow these semantics

28

🦺 No Exception Safety
No guarantees
Don't write C++ with no exception safety

Very hard to debug when things go wrong
Very easy to fix - wrap your resources and attach lifetimes

This gives you basic exception safety for free

29

🧪 Exceptions And Catch2

Checks expr doesn't throw an exception.

Checks expr throws an exception.

Checks expr throws an exception.

Checks expr throws an exception with a message.

CHECK_THROWS_AS and
CHECK_THROWS_WITH in a single check.

CHECK_NOTHROW(expr);1

CHECK_THROWS(expr);1

CHECK_THROWS_AS(expr, type);1

namespace Matchers = Catch::Matchers;
CHECK_THROWS_WITH(
 expr,
 Matchers::Message("message"));

1
2
3
4

CHECK_THROWS_MATCHES(
 expr,
 type,
 Matchers::Message("message"));

1
2
3
4

31

👂🏼Feedback

Or go to the .form here

32

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

