
COMP6771
🍪 Resource Management

Lecture 5.2

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/24T2/5.2-resource-management.pdf

In This Lecture

Why? 🤔
While we have ignored heap resources (malloc/free) to date, they are a critical part
of many libraries and we need to understand best practices around usage.

What? 📰
new/delete
copy and move semantics
lvalues and rvalues

2

🔍 Revision: Objects
What is an object in C++?

An object is a region of memory associated with a type
Unlike some other languages (Java), basic types such as int and bool are objects

For the most part, C++ objects are designed to be intuitive to use
What special things can we do with objects

Create
Destroy
Copy
Move

4

🪘 Long Lifetimes
There are 3 ways you can try and make an object in C++ have a lifetime that outlives
the scope it was defined it:

Returning it out of a function via copy (can have limitations)
Returning it out of a function via references (bad, see slide below)
Returning it out of a function as a heap resource (today's lecture)

6

🪘 Long Lifetimes
References have a problem

We need to be very careful when returning references.
The object must always outlive the reference.
This is undefined behaviour - if you're unlucky, the code might even work!
Moral of the story: Do not return references to variables local to the function returning.
For objects we create INSIDE a function, we're going to have to create heap memory
and return that.

auto okay(int& i) -> int& {
 return i;
}

auto okay(int& i) -> int const& {
 return i;
}

1
2
3
4
5
6
7

auto not_okay(int i) -> int& {
 return i;
}

auto not_okay() -> int& {
 auto i = 0;
 return i;
}

1
2
3
4
5
6
7
8

7

🔍 Revision: Objects
Objects are either stored on the stack or the heap
In general, most times you've been creating objects of a type it has been on the stack
We can create heap objects via new and free them via delete just like in C (malloc/free)

New and delete call the constructors/destructors of what they are creating

#include <iostream>
#include <vector>

int main() {
 int* a = new int{4};
 std::vector<int>* b = new std::vector<int>{1,2,3};
 std::cout << *a << "\n";
 std::cout << (*b)[0] << "\n";
 delete a;
 delete b;
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12

new.cpp

9

http://teaching.bitflip.com.au/code/6771/24T2/5.2/new.cpp

🔍 Revision: Objects
Why do we need heap resources?

Heap object outlives the scope it was created in
More useful in contexts where we need more explicit control of ongoing memory
size (e.g. vector as a dynamically sized array)
Stack has limited space on it for storage, heap is much larger

#include <iostream>
#include <vector>

int* newInt(int i) {
 int* a = new int{i};
 return a;
}

int main() {
 int* myInt = newInt(5);
 std::cout << *myInt << "\n"; // a was defined in a scope that
 // no longer exists
 delete myInt;
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

scope.cpp

10

http://teaching.bitflip.com.au/code/6771/24T2/5.2/scope.cpp

🚃 Std::Vector<Int> Under The Hood
Let's speculate about how a vector is implemented. It's going to have to manage some

form of heap memory, so maybe it looks like this? Is anything wrong with this?

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Destructor
 ~my_vec() {};

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11

12

� Destructors
Called when the object goes out of scope

What might this be handy for?
Does not occur for reference objects

Implicitly noexcept
What would the consequences be if this were not the case

Why might destructors be handy?
Freeing pointers
Closing files
Unlocking mutexes (from multithreading)
Aborting database transactions

14

� Destructors
What happens when my_vec goes out of scope?

Destructors are called on each member
Destructing a pointer type does nothing

Right now this results in a memory leak. How do we fix it?

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Destructor
 ~my_vec() {};

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9
10
11

15

� Destructors
my_vec::~my_vec() {
 delete[] data_;
}

1
2
3

16

 Rule Of 5
When writing a class, if we can't default all of our operators (preferred), we should

consider the "rule of 5"

Destructor
Copy constructor
Copy assignment
Move assignment
Move constructor

The presence or absence of these 5 operations are critical in managing resources

18

🛳 Vector - Overall
Though you should always consider it, you should rarely
have to write it

If all data members have one of these defined, then the
class should automatically define this for you
But this may not always be what you want
C++ follows the principle of "only pay for what you use"

Zeroing out the data for an int is extra work
Hence, moving an int actually just copies it
Same for other basic types

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// Call constructor.
auto vec_short = my_vec(2);
auto vec_long = my_vec(9);
// Doesn't do anything
auto& vec_ref = vec_long;
// Calls copy constructor.
auto vec_short2 = vec_short;
// Calls copy assignment.
vec_short2 = vec_long;
// Calls move constructor.
auto vec_long2 = std::move(vec_long);
// Calls move assignment
vec_long2 = std::move(vec_short);

1
2
3
4
5
6
7
8
9

10
11
12
13

20

© Vector - Copy Constructor
What does it mean to copy a my_vec?
What does the default synthesized copy
constructor do?
It does a memberwise copy
What are the consequences?

Any modification to vec_short will
also change vec_short2
We will perform a double free

How can we fix this?

class my_vec {
 // Constructor
 my_vec(int size):
 data_{new int[size]},
 size_{size},
 capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

my_vec::my_vec(my_vec const& orig): data_{new int[orig.size_]},
 size_{orig.size_},
 capacity_{orig.size_} {
 std::copy(orig.data_, orig.data_ + orig.size_, data_);
}

// auto vec_short = my_vec(2);
// auto vec_short2 = vec_short;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

22

© Vector - Copy Assignment
Assignment is the same as construction, except that there is
already a constructed object in your destination
You need to clean up the destination first
The copy-and-swap idiom makes this trivial

my_vec& my_vec::operator=(my_vec const& orig) {
 my_vec(orig).swap(*this); return *this;
}

void my_vec::swap(my_vec& other) {
 std::swap(data_, other.data_);
 std::swap(size_, other.size_);
 std::swap(capacity_, other.capacity_);
}

// Alternate implementation, may not be as performant.
my_vec& my_vec::operator=(my_vec const& orig) {
 my_vec copy = orig;
 std::swap(copy, *this);
 return *this;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

auto vec_short = my_vec(2);
auto vec_long = my_vec(9);
vec_long = vec_short;
}

1
2
3
4

class my_vec {
 // Constructor
 my_vec(int size):
 data_{new int[size]},
 size_{size},
 capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

23

🐚 Lvalue Vs Rvalue
lvalue: An expression that is an object reference

E.G. Variable name, subscript reference
Always has a defined address in memory

rvalue: Expression that is not an lvalue
E.G. Object literals, return results of functions
Generally has no storage associated with it

int main() {
 int i = 5; // 5 is rvalue, i is lvalue
 int j = i; // j is lvalue, i is lvalue
 int k = 4 + i; // 4 + i produces rvalue
 // then stored in lvalue k
}

1
2
3
4
5
6

25

💩 Lvalue References

There are multiple types of references
Lvalue references look like T&
Lvalue references to const look like T const&

Once the lvalue reference goes out of scope, it may still be needed

void f(my_vec& x);1

27

🥔 Rvalue References

Rvalue references look like T&&
An rvalue reference formal parameter means that the value was disposable from the caller of the function

If outer modified value, who would notice / care?
The caller (main) has promised that it won't be used anymore

If inner modified value, who would notice / care?
The caller (outer) has never made such a promise.
An rvalue reference parameter is an lvalue inside the function

void f(my_vec&& x);1

void inner(std::string&& value) {
 value[0] = 'H';
 std::cout << value << '
';
}

void outer(std::string&& value) {
 inner(value); // This fails? Why?
 std::cout << value << '
';
}

int main() {
 outer("hello"); // This works fine.
 auto s = std::string("hello");
 inner(s); // This fails because s is an lvalue.
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

29

🏃 Std::Move

A library function that converts an lvalue to an rvalue so that a "move constructor" (similar to copy constructor) can use it.
This says "I don't care about this anymore"
All this does is allow the compiler to use rvalue reference overloads

// Looks something like this.
T&& move(T& value) {
 return static_cast<T&&>(value);
}

1
2
3
4

void inner(std::string&& value) {
 value[0] = 'H';
 std::cout << value << '
';
}

void outer(std::string&& value) {
 inner(std::move(value));
 // Value is now in a valid but unspecified state.
 // Although this isn't a compiler error, this is bad code.
 // Don't access variables that were moved from, except to reconstruct them.
 std::cout << value << '
';
}

int main() {
 f1("hello"); // This works fine.
 auto s = std::string("hello");
 f2(s); // This fails because i is an lvalue.
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

31

🚒 Moving Objects
Always declare your moves as noexcept

Failing to do so can make your code slower
Consider: push_back in a vector

Unless otherwise specified, objects that have been moved from are in a valid but unspecified state
Moving is an optimisation on copying

The only difference is that when moving, the moved-from object is mutable
Not all types can take advantage of this

If moving an int, mutating the moved-from int is extra work
If moving a vector, mutating the moved-from vector potentially saves a lot of work

Moved from objects must be placed in a valid state
Moved-from containers usually contain the default-constructed value
Moved-from types that are cheap to copy are usually unmodified
Although this is the only requirement, individual types may add their own constraints

Compiler-generated move constructor / assignment performs memberwise moves

33

🚒 Vector - Move Constructor
Very similar to copy

constructor, except we can
use std::exchange instead.

class my_vec {
 // Constructor
 my_vec(int size)
 : data_{new int[size]}
 , size_{size}
 , capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

my_vec::my_vec(my_vec&& orig) noexcept
: data_{std::exchange(orig.data_, nullptr)}
, size_{std::exchange(orig.size_, 0)}
, capacity_{std::exchange(orig.capacity_, 0)} {}

auto vec_short = my_vec(2);
auto vec_short2 = std::move(vec_short);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

34

🚒 Vector - Move Assignment
Like the move

constructor, but the
destination is already

constructed

class my_vec {
 // Constructor
 my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

 // Copy constructor
 my_vec(my_vec const&) = default;
 // Copy assignment
 my_vec& operator=(my_vec const&) = default;

 // Move constructor
 my_vec(my_vec&&) noexcept = default;
 // Move assignment
 my_vec& operator=(my_vec&&) noexcept = default;

 // Destructor
 ~my_vec() = default;

 int* data_;
 int size_;
 int capacity_;
}

my_vec& my_vec::operator=(my_vec&& orig) noexcept {
 // The easiest way to write a move assignment is generally to do
 // memberwise swaps, then clean up the orig object.
 // Doing so may mean some redundant code, but it means you don't
 // need to deal with mixed state between objects.
 std::swap(data_, orig.data_);
 std::swap(size_, orig.size_);
 std::swap(capacity_, orig.capacity_);

 // The following line may or may not be nessecary, depending on
 // if you decide to add additional constraints to your moved-from object.
 delete[] orig.data_
 orig.data_ = nullptr;
 orig.size_ = 0;
 orig.capacity = 0;

 return *this;
}

auto vec_short = my_vec(2);
auto vec_long = my_vec(9);
vec_long = std::move(vec_short);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

35

🗑 Explicitly Deleted Copy/Move
We may not want a type to be copyable / moveable
If so, we can declare fn() = delete

class T {
 T(const T&) = delete;
 T(T&&) = delete;
 T& operator=(const T&) = delete;
 T& operator=(T&&) = delete;
};

1
2
3
4
5
6

37

🗑 Implicitly Deleted Copy/Move
Under certain conditions, the compiler will not generate copies and moves
The implicitly defined copy constructor calls the copy constructor member-wise

If one of its members doesn't have a copy constructor, the compiler can't generate one for you
Same applies for copy assignment, move constructor, and move assignment

Under certain conditions, the compiler will not automatically generate copy / move assignment /
constructors

eg. If you have manually defined a destructor, the copy constructor isn't generated
If you define one of the rule of five, you should explictly delete, default, or define all five

If the default behaviour isn't sufficient for one of them, it likely isn't sufficient for others
Explicitly doing this tells the reader of your code that you have carefully considered this
This also means you don't need to remember all of the rules about "if I write X, then is Y generated"

39

🦞 RAII
RAII = Resource Acquisition Is Initialization

In summary, today is really about emphasising RAII

Resource = heap object
A concept where we encapsulate resources inside objects

Acquire the resource in the constructor
Release the resource in the destructor
eg. Memory, locks, files

Every resource should be owned by either:
Another resource (eg. smart pointer, data member)
Named resource on the stack
A nameless temporary variable

41

⏰ Object Lifetimes
To create safe object lifetimes in C++, we always attach the lifetime of one object to that

of something else

Named objects:
A variable in a function is tied to its scope
A data member is tied to the lifetime of the class instance
An element in a std::vector is tied to the lifetime of the vector

Unnamed objects:
A heap object should be tied to the lifetime of whatever object created it
Examples of bad programming practice

An owning raw pointer is tied to nothing
A C-style array is tied to nothing

43

�Feedback

Or go to the .form here

44

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

