
COMP6771
🍪 Smart Pointers

Lecture 5.3

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/24T2/5.3-smart-pointers.pdf

In This Lecture

Why? 🤔
Managing unnamed / heap memory can be dangerous, as there is always the
chance that the resource is not released / free'd properly. We need solutions to help
with this.

What? 📰
Smart pointers
Unique pointer, shared pointer
Partial construction

2

⏰ Object Lifetimes
To create safe object lifetimes in C++, we always attach the lifetime of one object to that

of something else

Named objects:
A variable in a function is tied to its scope
A data member is tied to the lifetime of the class instance
An element in a std::vector is tied to the lifetime of the vector

Unnamed objects:
A heap object should be tied to the lifetime of whatever object created it
Examples of bad programming practice

An owning raw pointer is tied to nothing
A C-style array is tied to nothing

4

🦞 RAII
RAII = Resource Acquisition Is Initialization

In summary, resource management was really about emphasising RAII

Resource = heap object
A concept where we encapsulate resources inside objects

Acquire the resource in the constructor
Release the resource in the destructor
eg. Memory, locks, files

Every resource should be owned by either:
Another resource (eg. smart pointer, data member)
Named resource on the stack
A nameless temporary variable

6

😷 Making A Pointer Safe
We could write a class to make a pointer safe.

// myintpointer.h

class MyIntPointer {
 public:
 // This is the constructor
 MyIntPointer(int* value): value_{value} {}

 // This is the destructor
 ~MyIntPointer() {
 // Similar to C's free function.
 delete value_;
 }

 int* GetValue() {
 return value_
 }

 private:
 int* value_;
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

void fn() {
 // Similar to C's malloc
 MyIntPointer p{new int{5}};
 // Copy the pointer;
 MyIntPointer q{p.GetValue()};
 // p and q are both now destructed.
 // What happens?
}

1
2
3
4
5
6
7
8

8

🧠 Smart Pointers
Smart pointers are ways of wrapping unnamed (i.e. raw pointer) heap objects in
named stack objects to that object lifetimes can be managed much more safely
Introduced in C++11
Usually two ways of solving problems
unique_ptr + raw pointers
shared_ptr + weak_ptr

Type Shared ownership Take ownership

std::unique_ptr<T> No Yes

raw pointers No No

std::shared_ptr<T> Yes Yes

std::weak_ptr<T> No No

10

😍 Unique Pointer
std::unique_ptr<T>

The unique pointer owns the object
When the unique pointer is destructed, the underlying object is too

raw pointer (observer)
Unique pointer may have many observers
There is an appropriate use of raw pointers (or refereces) in C++
Once the original pointer is destructed, you must ensure you don't access the raw
pointers (no checks exist)
Those observers do not have ownership over the pointer

Also note the use of nullptr in C++ instead of NULL.

12

😍 Unique Pointer
#include <memory>
#include <iostream>

int main() {
 auto up1 = std::unique_ptr<int>{new int};
 // auto up2 = up1; // no copy constructor
 std::unique_ptr<int> up3;
 // up3 = up2; // no copy assignment

 up3.reset(up1.release()); // OK
 auto up4 = std::move(up3); // OK
 std::cout << up4.get() << "\n";
 std::cout << *up4 << "\n";
 std::cout << *up1 << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

unique.cpp

13

http://teaching.bitflip.com.au/code/6771/24T2/5.3/unique.cpp

👀 Observer Pointer
#include <memory>
#include <iostream>

int main() {
 auto up1 = std::unique_ptr<int>{new int{0}};
 *up1 = 5;
 std::cout << *up1 << "\n";
 auto op1 = up1.get();
 *op1 = 6;
 std::cout << *op1 << "\n";
 up1.reset();
 std::cout << *op1 << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13

observer.cpp

14

http://teaching.bitflip.com.au/code/6771/24T2/5.3/observer.cpp

❌ Removing New/Delete
We can use another function to remove the need for the new keyword. It has other

benefits that we will explore later.

#include <iostream>
#include <memory>

auto main() -> int {
	 // 1 - Worst - you can accidentally own the resource multiple
	 // times, or easily forget to own it.
	 // auto* silly_string = new std::string{"Hi"};
	 // auto up1 = std::unique_ptr<std::string>(silly_string);
	 // auto up11 = std::unique_ptr<std::string>(silly_string);

	 // 2 - Not good - requires actual thinking about whether there's a leak.
	 auto up2 = std::unique_ptr<std::string>(new std::string("Hello"));

	 // 3 - Good - no thinking required.
	 auto up3 = std::make_unique<std::string>("Hello");

	 std::cout << *up2 << "\n";
	 std::cout << *up3 << "\n";
	 // std::cout << *(up3.get()) << "\n";
	 // std::cout << up3->size();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

smart-no-new.cpp

16

http://teaching.bitflip.com.au/code/6771/24T2/5.3/smart-no-new.cpp

🙏 Shared Pointer
std::shared_ptr<T>

Several shared pointers share ownership of the object
A reference counted pointer
When a shared pointer is destructed, if it is the only shared pointer left pointing at
the object, then the object is destroyed
May also have many observers

Just because the pointer has shared ownership doesn't mean the observers
should get ownership too

std::weak_ptr<T>

Weak pointers are used with shared pointers when:
You don't want to add to the reference count
You want to be able to check if the underlying data is still valid before using it

18

🙏 Shared Pointer
#include <iostream>
#include <memory>

auto main() -> int {
	 auto x = std::make_shared<int>(5);
	 auto y = std::shared_ptr<int>(x);

	 std::cout << "use count: " << x.use_count() << "\n";
	 std::cout << "value: " << *x << "\n";
	 x.reset(); // Memory still exists, due to y.
	 std::cout << "use count: " << y.use_count() << "\n";
	 std::cout << "value: " << *y << "\n";
	 y.reset(); // Deletes the memory, since
	 // no one else owns the memory
	 std::cout << "use count: " << x.use_count() << "\n";
	 std::cout << "value: " << *y << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

shared.cpp

19

http://teaching.bitflip.com.au/code/6771/24T2/5.3/shared.cpp

Weak Pointer
#include <iostream>
#include <memory>

auto main() -> int {
	 auto x = std::make_shared<int>(1);

	 auto wp = std::weak_ptr<int>(x); // x owns the memory

	 auto y = wp.lock();
	 if (y != nullptr) { // x and y own the memory
	 	 // Do something with y
	 	 std::cout << "Attempt 1: " << *y << '\n';
	 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

weak.cpp

20

http://teaching.bitflip.com.au/code/6771/24T2/5.3/weak.cpp

🤷🏼‍♂️ When To Use Which
Unique pointer vs Shared pointer

You almost always want a unique pointer over a hared pointer
Use a shared pointer if either:

An object has multiple owenrs, and you don't know which one will stay around
the longest
You need temporary ownership (unlikely)

22

📋 Examples Of Smart Pointer Usage
Linked list
Doubly linked list
Tree
Graph

24

🚰 Leak Freedom

26

🚰 Stack Unwinding
Stack unwinding is the process of exiting the stack frames until we find an exception
handler for the function
This calls any destructors on the way out

Any resources not managed by destructors won't get freed up
If an exception is thrown during stack unwinding, std::terminate is called

28

🚰 Stack Unwinding
void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = new int{5};
 g();
 // Never executed.
 delete ptr;
}

1
2
3
4
5
6
7
8
9
10

void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = new int{5};
 g();
 auto uni = std::unique_ptr<int>(ptr);
}

1
2
3
4
5
6
7
8
9

void g() {
 throw std::runtime_error{""};
}

int main() {
 auto ptr = std::make_unique<int>(5);
 g();
}

1
2
3
4
5
6
7
8

29

🪓 Exceptions And Destructors
During stack unwinding, std::terminate() will be called if an exception leaves a
destructor
The resources may not be released properly if an exception leaves a destructor
All exceptions that occur inside a destructor should be handled inside the destructor
Destructors usually don't throw, and need to explicitly opt in to throwing

STL types don't do that

30

🧱 Partial Construction
What happens if an exception is thrown
halfway through a constructor?

The C++ standard: "An object that is
partially constructed or partially
destroyed will have destructors
executed for all of its fully constructed
subobjects"
A destructor is not called for an object
that was partially constructed
Except for an exception thrown in a
constructor that delegates (why?)

#include <exception>

class my_int {
public:
 my_int(int const i) : i_{i} {
 (void)i_;
 if (i == 2) {
 throw std::exception();
 }
 }
private:
 int i_;
};

class unsafe_class {
public:
 unsafe_class(int a, int b)
 : a_{new my_int{a}}
 , b_{new my_int{b}}
 {}

 ~unsafe_class() {
 delete a_;
 delete b_;
 }
private:
 my_int* a_;
 my_int* b_;
};

int main() {
 auto a = unsafe_class(1, 2);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

partial-construction-bad.cpp

31

http://teaching.bitflip.com.au/code/6771/24T2/5.3/partial-construction-bad.cpp

🧱 Partial Construction: Solution
Option 1: Try / catch in the constructor

Very messy, but works (if you get it right...)
Doesn't work with initialiser lists (needs to be in
the body)

Option 2:
An object managing a resource should initialise
the resource last

The resource is only initialised when the
whole object is
Consequence: An object can only manage one
resource
If you want to manage multiple resources,
instead manage several wrappers , which
each manage one resource

#include <exception>
#include <memory>

class my_int {
public:
 my_int(int const i)
 : i_{i} {
 (void)i_;
 if (i == 2) {
 throw std::exception();
 }
 }
private:
 int i_;
};

class safe_class {
public:
 safe_class(int a, int b)
 : a_(std::make_unique<my_int>(a))
 , b_(std::make_unique<my_int>(b))
 {}
private:
 std::unique_ptr<my_int> a_;
 std::unique_ptr<my_int> b_;
};

int main() {
 auto a = safe_class(1, 2);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

partial-construction-good.cpp

32

http://teaching.bitflip.com.au/code/6771/24T2/5.3/partial-construction-good.cpp

👂🏼Feedback

Or go to the .form here

33

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

