
COMP6771

🥑 Welcome & Getting Started
Lecture 1.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/25T2/1.1-getting-started.pdf

🤷🏻♀️ Why COMP6771?

3

🤷🏻♀️ Why COMP6771?

To learn C++ of course

3

🤷🏻♀️ Why COMP6771?

But why is C++ so interesting?

4

🤷🏻♀️ Why COMP6771?

But why is C++ so interesting?

Some languages are "powerful" (e.g. Java, Python)

4

🤷🏻♀️ Why COMP6771?

But why is C++ so interesting?

Some languages are "powerful" (e.g. Java, Python)

Some languages are "fast" i.e. high performance (e.g. C)

4

🤷🏻♀️ Why COMP6771?

But why is C++ so interesting?

Some languages are "powerful" (e.g. Java, Python)

Some languages are "fast" i.e. high performance (e.g. C)

Some languages have wide adoption and understanding

4

🤷🏻♀️ Why COMP6771?

But why is C++ so interesting?

Some languages are "powerful" (e.g. Java, Python)

Some languages are "fast" i.e. high performance (e.g. C)

Some languages have wide adoption and understanding

Few widely adopted languages are both powerful and fast

4

🤷🏻♀️ Why COMP6771?

How would we describe C++?

5

🤷🏻♀️ Why COMP6771?

How would we describe C++?

By using the C++ design pillars: We want a lightweight-abstraction programming

language We want to be more powerful than C, but still simpler than C We still write

directly for hardware for performance reasons We want to provide object-oriented

capabilities without it being a requirement.

5

🤷🏻♀️ Why COMP6771?

Where is C++ used?

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

Operating systems

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

Operating systems

Video Games

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

Operating systems

Video Games

Fundamental computer applications (e.g. web browsers)

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

Operating systems

Video Games

Fundamental computer applications (e.g. web browsers)

Robotics

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

Operating systems

Video Games

Fundamental computer applications (e.g. web browsers)

Robotics

...pretty much anything that is complex and requires high performance

6

🤷🏻♀️ Why COMP6771?

Where is C++ used?

7

🤷🏻♀️ Why COMP6771?

Relationship between C and C++

8

🤷🏻♀️ Why COMP6771?

Relationship between C and C++

C++ is backwards compatible with C, so it's easy to think that you can build your C++

understanding directly on top of your C understanding

8

🤷🏻♀️ Why COMP6771?

Relationship between C and C++

C++ is backwards compatible with C, so it's easy to think that you can build your C++

understanding directly on top of your C understanding

However, while valid C code is often valid C++, good C is is almost never good C++ code.

Over the years C++ continues to diverge from C

8

🤷🏻♀️ Why COMP6771?

Relationship between C and C++

C++ is backwards compatible with C, so it's easy to think that you can build your C++

understanding directly on top of your C understanding

However, while valid C code is often valid C++, good C is is almost never good C++ code.

Over the years C++ continues to diverge from C

Well-written modern C++ code would be virtually unrecognisable to a C developer. For

example, we don't use malloc, free, C-style arrays, C-style structs, C-style linked lists, and

generally avoid explicit pointers.

8

🧠 Assumed Knowledge
Version control (git)

Procedural programming (C)

Object-oriented programming (Java)

If you lack git assumed knowledge, we have lectures to provide you all the help.

9

📗 Summarised Learning Outcomes
1. skills in writing software using C++20

2. skills in using libraries to develop software

3. skills in using tools to build and test software

4. knowledge and understanding about unit testing

5. knowledge and understanding about reactive programming, object-oriented

programming, and generic programming

10

🌻 Approach To Teaching

We are going to focus on the following:

Learning most key parts of the C++ language

Use a modern build system and use C++20

Learn how to test our code

Focus on good C++ code design

11

💻 Course Site

Our course site is a custom content management system called . Ester was written

by Hayden in April 2024.

Ester

13

https://cs6771.web.cse.unsw.edu.au/

🥰 The Team

Lecturer in charge: Hayden Smith

Tutors: 20-30 undergraduate and postgraduate tutors

Guest lectures: two lined up so far!

15

👀 Assessment Structure

There is no direct assessment associated with Lectures or Tutorials

Item Due Weighting

Assignments Due weeks 3, 4, 7, 10 70%

Exam Exam Period 30%

17

👨🏽🏫 Teaching Methods
🟢 Lectures

2 x 2 hours per week

🟡 Tutorials

You can attend none, any, or all tutorials

Tutorials are for covering exercise questions

Please respect that your tutor probably needs to leave at the end

Tutorials are all in person

19

👨🏽🏫 Teaching Methods
🔵 Help Sessions

Chance to talk to tutors and get help on matters to do with tutorial exercises and

assignments

Help sessions will contain 1-5 tutors who will be split between assisting students with

questions, and marking labs off

Please pay attention to how many tutors are in a given help session - we do our best to

predict demand and adjust but please attend help sessions being prepared to wait

🟣 Assignments - In-Depth Skills

Ass1: Basic algorithmic performance

Ass2: Defining a simple data type

Ass3: Defining a complex data type

🔥 Assignments are now due 4 days later this term 🔥

20

👨🏽🏫 Teaching Methods
🔴 Exam

Final exam is:

A hurdle / double-pass

Closed book

In-person

21

🙏🏾 Getting Help

If you need help with something, go here:

1. EdStem (sidebar on Webcms3)

2. Help Sessions

3. cs6771@cse.unsw.edu.au

23

🙏🏾 Getting Help

Two primary resources:

 (do not use cplusplus.com)

Bjarne Stroustrup

Programming Principles and Practice using C++

A Tour of C++

cppreference.com

24

https://cppreference.com/

⛄ Getting Setup

If you need help getting "installed" for the course, you can follow our Getting Started

Guide

26

https://cgi.cse.unsw.edu.au/~cs6771/NOW/getting-started
https://cgi.cse.unsw.edu.au/~cs6771/NOW/getting-started

🛠 Main Tools

The main tools we use in this course are:

Course Website

Gitlab

EdStem (forum)

Note Hayden does not directly monitor

Your own computer! (or vlab)

28

🎭 Style Guide

In terms of nuanced code style, we provide methods throughout the course to

automatically ensure your code complies to a standard style.

In terms of general best practices, you can find more information that in our

.

best

practices guide

30

https://cgi.cse.unsw.edu.au/~cs6771/NOW/best-practices
https://cgi.cse.unsw.edu.au/~cs6771/NOW/best-practices

🤖 AI Usage Policy

The final exam does not allow for the usage of LLMs.

Besides that, you are welcome to use them as assistants (not code generation tools)

throughout the course.

Please remember: AI is killing graduate roles, don't become collateral.

32

💝 Getting Along
Understand the expectations around student conduct.

Create an inclusive learning environment.

Let's all treat each other with respect and understanding.

34

🚼 First Programs

#include <iostream>

int main()
{
 // put "Hello world\n" to the character output
 std::cout << "Hello, world!\n";
}

1
2
3
4
5
6
7

first.cpp

$ g++ -o hello hello.cpp
$./hello

1
2

36

http://teaching.bitflip.com.au/code/6771/24T2/1.1/first.cpp

🚼 First Programs

#include <iostream>

#include "age.h"

int main()
{
 // put "Hello world\n" to the character output
 std::cout << getAge() << "\n";
}

int getAge()
{
 return 5;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

age.cpp

int getAge();1

age.h

$ g++ -o age age.cpp
$./age

1
2

37

http://teaching.bitflip.com.au/code/6771/24T2/1.1/age.cpp
http://teaching.bitflip.com.au/code/6771/24T2/1.1/age.h

🚼 First Programs

We can compile and execute this too.

Declarations in .h files, definitions in .c files

#include <iostream>

#include "age.h"

int main()
{
 std::cout << getAge() << "\n";
}

1
2
3
4
5
6
7
8

age_main.cpp

int getAge();1

age.h

#include <iostream>

#include "age.h"

int getAge()
{
 return 5;
}

1
2
3
4
5
6
7
8

age_lib.cpp

$ g++ -o age age_main.cpp age_lib.cpp
$./age

1
2

39

http://teaching.bitflip.com.au/code/6771/24T2/1.1/age_main.cpp
http://teaching.bitflip.com.au/code/6771/24T2/1.1/age.h
http://teaching.bitflip.com.au/code/6771/24T2/1.1/age_lib.cpp

👴🏻 The Problem With Classic Compiling
Imagine having thousands of header and cpp files?

You have a few options

Manually create each library and make sure you link all the dependencies

You would have to make sure you linked them all in the right order

Create one massive binary and give it all the headers and cpp files

Extremely slow

Hard to build just parts of the code (eg. To run tests on one file)

Makefiles

Unwieldy at large scale (hard to read and hard to write)

Any better options?

40

⛰ Managing Larger Projects
The solution to this chaos is to use build systems.

With these systems, you simply have to declare files and relationships between

them, and the build system will figure out what to run for you.

In COMP6771 we will be using CMake for compilation in conjunction with VScode for

editing.

41

🥼 Cpp-Intro

Let's follow the cpp intro setup activity together

42

📐 Principles Of Testing
Test API, not implementation

Don't make tests brittle

If your code changes, your tests should change minimally

Make tests simple

It should be obvious what went wrong

Don't put if statements or loops in your tests

Any complex code should be put in a well-named function

43

🧪 Catch 2

Catch2 is just one particular framework you can use to test with C++. More information

on it can be found here.

github.com/catchorg/Catch2/blob/devel/docs/Readme.md#top

44

👂🏼Feedback

Or go to the .form here

45

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

