COMP6771

& Resource Management

Lecture 5.2

Author(s): Hayden Smith

(Download as PDF)

http://teaching.bitflip.com.au/6771/25T2/5.2-resource-management.pdf

In This Lecture

- Why? @
= While we have ignored heap resources (malloc/free) to date, they are a critical part
of many libraries and we need to understand best practices around usage.

. What? &
= new/delete
= copy and move semantics
= |values and rvalues

@ _Revision: Objects

e Whatis an objectin C++?
= An objectis a region of memory associated with a type
» Unlike some other languages (Java), basic types such as int and bool are objects
e Forthe most part, C++ objects are designed to be intuitive to use
= What special things can we do with objects
o Create
o Destroy
o Copy
o Move

> Long Lifetimes

e There are 3 ways you can try and make an object in C++ have a lifetime that outlives
the scope it was defined it:
= Returning it out of a function via copy (can have limitations)
= Returning it out of a function via references (bad, see slide below)
= Returning it out of a function as a heap resource (today's lecture)

> Long Lifetimes

References have a problem

e We need to be very careful when returning references.

e The object must always outlive the reference.

e Thisis undefined behaviour - if you're unlucky, the code might even work!

e Moral of the story: Do not return references to variables local to the function returning.

e For objects we create INSIDE a function, we're going to have to create heap memory
and return that.

1 auto okay(int& 1) -> int& { 1 auto not_okay(int i) -> int& {
2 return 1i; 2 return i;
3} 3}
4 4
5 auto okay(int& i) -> int const& { 5 auto not_okay() -> int& {
6 return i; 6 auto 1 = 0;
7 } 7 return 1i;
8

}

@_Revision: Objects

e Objects are either stored on the stack or the heap

* In general, most times you've been creating objects of a type it has been on the stack

e We can create heap objects via new and free them via delete just like in C (malloc/free)
= New and delete call the constructors/destructors of what they are creating

1 #include <iostream>

2 #include <vector>

3

int main() {
int* a = new int{4};
std::vector<int>* b = new std::vector<int>{1,2,3};
std::cout << *a << "\n";
std::cout << (*b)[0] << "\n";

9 delete a;

10 delete b;

11 return 0O;

o ~NO O b

new.cpp

http://teaching.bitflip.com.au/code/6771/24T2/5.2/new.cpp

@_Revision: Objects

 Why do we need heap resources?
= Heap object outlives the scope it was created in
= More useful in contexts where we need more explicit control of ongoing memory size
(e.g. vector as a dynamically sized array)
= Stack has limited space on it for storage, heap is much larger

#include <iostream>
#include <vector>

int* newInt(int i) {
int* a = new int{i};
return a;

}

O~NO UL WN R

©

int main() {
int* myInt = newInt(5);
std::cout << *myInt << "\n"; // a was defined in a scope that
// no longer exists

[
N RO

13 delete myInt;
14 return 0,
15 }

scope.cpp

http://teaching.bitflip.com.au/code/6771/24T2/5.2/scope.cpp

Std::Vector<Int> Under The Hood

Let's speculate about how a vector is implemented. It's going to have to manage some

form of heap memory, so maybe it looks like this? Is anything wrong with this?

1
2
3
4
5
6
!
8

9
10
11 }

class my_vec {

// Constructor
my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

// Destructor
~my_vec() {};

int* data_;

int size_;
int capacity_;

12

¢ Destructors

e Called when the object goes out of scope

= What might this be handy for?

» Does not occur for reference objects
e Implicitly noexcept

» What would the consequences be if this were not the case
e Why might destructors be handy?

= Freeing pointers

» Closing files

= Unlocking mutexes (from multithreading)

» Aborting database transactions

14

1
2
S
4
5
6
7
8

9
10
11 }

¢ Destructors

e What happens when my vec goes out of scope?
= Destructors are called on each member
= Destructing a pointer type does nothing

class my_vec {

// Constructor
my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}

// Destructor
~my_vec() {};

int* data_;

int size_;
int capacity_;

Right now this results in a memory leak. How do we fix it?

15

¢ Destructors

Bl Rule Of 5

When writing a class, if we can't default all of our operators (preferred), we should
consider the "rule of 5"

Destructor

Copy constructor
e Copy assignment
e Move assignment

Move constructor

The presence or absence of these 5 operations are critical in managing resources

18

B& Vector - Overall

e Though you should always consider it, you should rarely
have to write it
= |f all data members have one of these defined, then the
class should automatically define this for you

= But this may not always be what you want

= C++ follows the principle of "only pay for what you use"
o Zeroing out the data for an int is extra work
o Hence, moving an int actually just copies it
o Same for other basic types

class my_vec {
// Constructor
my_vec(int size): data_{new int[size]}, size_{size}, capacity_{size} {}
// Copy constructor
my_vec(my_vec const&) = default;
// Copy assignment
my_vec& operator=(my_vec const&) = default;

// Move constructor

my_vec(my_vec&&) noexcept = default;

// Move assignment

my_vec& operator=(my_vec&&) noexcept = default;

// Destructor
~my_vec() = default;

int* data_;
int size_;
int capacity_;

// Call constructor.

auto vec_short = my_vec(2);

auto vec_long = my_vec(9);

// Doesn't do anything

auto& vec_ref = vec_long;

// Calls copy constructor.

auto vec_short2 = vec_short;

// Calls copy assignment.
vec_short2 = vec_long;

// Calls move constructor.

auto vec_long2 = std::move(vec_long);
// Calls move assignment
vec_long2 = std::move(vec_short);

20

©) Vector - Copy Constructor

What does it mean to copy a my_vec?
What does the default synthesized
copy constructor do?
It does a memberwise copy
What are the consequences?

= Any modification to vec_short will

also change vec_short2
= We will perform a double free

How can we fix this?

1 class my_vec {

2 // Constructor

3 my_vec(int size):

4 data_{new int[size]},
5 size_{size},

6 capacity_ {size} {}

7
8

// Copy constructor
9 my_vec(my_vec const&) = default;
10 // Copy assignment
11 my_vec& operator=(my_vec const&) = default;

13 // Move constructor

14 my_vec (my_vec&&) noexcept = default;

15 // Move assignment

16 my_vec& operator=(my_vec&&) noexcept = default;

18 // Destructor
19 ~my_vec() = default;

21 int* data_;
22 int size_;
23 int capacity_;

24 }

25

26 my_vec::my_vec(my_vec const& orig): data_{new int[orig.size]},
27 size_{orig.size_},

28 capacity {orig.size_} {

29 std::copy(orig.data_, orig.data_ + orig.size_, data_);

30 }

31

32 // auto vec_short = my_vec(2);
33 // auto vec_short2 = vec_short;

22

©) Vector - Copy Assignment

e Assignment is the same as construction, except that there is

class my_vec {
// Constructor
my_vec(int size):

1
already a constructed object in your destination 2
3
* You need to clean up the destination first ; data_{new int[size]},
6
7
8

size {size},
e The copy-and-swap idiom makes this trivial CAREETEL I 7]
// Copy constructor

) my_vec(my_vec const&) = default;

1 my_vec& my_vec: :operator:(myfvec consté& orig) { 1@ // Copy assignment

g ; my_vec(orig).swap(*this); return *this; 11 my_vec& operator=(my_vec const&) = default;
12

4

5 void my_vec::swap(my_vec& other) { LS 7 VI B

6 std: :swap(data_, other.data_);: 14 myfvec(myfvgc&&) noexcept = default;

7 std::swap(size_, other.size_); 15 // Move assignment

3 std: :swap(capacity_, other.capacity_); 16 my_vec& operator=(my_vec&&) noexcept = default;

9 17

10 ’ 18 // Destructor

11 // Alternate implementation, may not be as performant. 19 ~my_vec() = default;

12 my_vec& my_vec::operator=(my_vec const& orig) { 20

13 my_vec copy = orig; 21 int* data_;

14 std::swap(copy, *this); 22 int size_;

15 return *this; 23 int capacity_;

16 } 24 }

1 auto vec_short = my_vec(2);

2 auto vec_long = my_vec(9);

3 vec_long = vec_short;

4 3

@ Lvalue Vs Rvalue

e lvalue: An expression that is an object reference
= E.G. Variable name, subscript reference
= Always has a defined address in memory

e rvalue: Expression that is not an lvalue
= E.G. Object literals, return results of functions
= Generally has no storage associated with it

1 int main() {

2 int 1 =5; // 5 1is rvalue, 1 is lvalue

3 int j = 1; // j is lvalue, i is lvalue

4 int k =4 + 1i; // 4 + 1 produces rvalue

5 // then stored in lvalue k
6 }

25

oo, Lvalue References

1 void f(my_vec& X);

e There are multiple types of references
= Lvalue references look like T&
= Lvalue references to const look like T const&
e Once the lvalue reference goes out of scope, it may still be needed

27

@ Rvalue References

1 void f(my_vec&& X);

e Rvalue references look like T&&
e An rvalue reference formal parameter means that the value was disposable from the caller of the function
= |f outer modified value, who would notice / care?
o The caller (main) has promised that it won't be used anymore
= |f inner modified value, who would notice / care?
o The caller (outer) has never made such a promise.
o An rvalue reference parameter is an lvalue inside the function

1 void inner(std::string&& value) {
2 value[O0] = 'H';

3 std::cout << value << '

4 ',

5}

6

7 void outer(std::string&& value) {
8 inner(value); // This fails? Why?
9 std::cout << value << '

10 ';

11 }

12

13 int main() {

14 outer("hello"); // This works fine.

15 auto s = std::string("hello");

16 inner(s); // This fails because s is an lvalue.
17 }

29

% Std::Move

1 // Looks something like this.

2 T&& move(T& value) {

3 return static_cast<T&&>(value);
4

}

e Alibrary function that converts an lvalue to an rvalue so that a "move constructor" (similar to copy constructor) can use it.
= Thissays "l don't care about this anymore"
= All this does is allow the compiler to use rvalue reference overloads

1 void inner(std::string&& value) {

2 value[0] = 'H';

3 std::cout << value << '

4 ',

5}

6
7 void outer(std::string&& value) {

8 inner(std: :move(value));

9 // Value is now in a valid but unspecified state.

10 // Although this isn't a compiler error, this is bad code.

11 // Don't access variables that were moved from, except to reconstruct them.
12 std::cout << value << '

13 ';

14 }

15

16 int main() {

17 f1("hello"); // This works fine.

18 auto s = std::string("hello");

19 f2(s); // This fails because i is an lvalue.

20 }

#= Moving Objects

Always declare your moves as noexcept
= Failing to do so can make your code slower
m Consider: push_back in a vector
Unless otherwise specified, objects that have been moved from are in a valid but unspecified state
Moving is an optimisation on copying
= The only difference is that when moving, the moved-from object is mutable
= Not all types can take advantage of this
o If moving an int, mutating the moved-from int is extra work
o If moving a vector, mutating the moved-from vector potentially saves a lot of work
Moved from objects must be placed in a valid state
= Moved-from containers usually contain the default-constructed value
= Moved-from types that are cheap to copy are usually unmodified
= Although this is the only requirement, individual types may add their own constraints
Compiler-generated move constructor / assignment performs memberwise moves

33

#~ Vector - Move Constructor

Very similar to copy
constructor, except we can
use std::exchange instead.

1 class my_vec {

2 // Constructor

3 my_vec(int size)

4 : data_{new int[size]}
5 , Size_{size}

6 , capacity_{size} {}

7
8

// Copy constructor
9 my_vec(my_vec const&) = default;
10 // Copy assignment
11 my_vec& operator=(my_vec const&) = default;

13 // Move constructor

14 my_vec(my_vec&&) noexcept = default;

15 // Move assignment

16 my_vec& operator=(my_vec&&) noexcept = default;

18 // Destructor
19 ~my_vec() = default;

21 int* data_;

22 int size_;

28 int capacity_;

24 }

25

26 my_vec::my_vec(my_vec&& orig) noexcept

27 : data_{std::exchange(orig.data_, nullptr)}
28 , size_{std::exchange(orig.size_, 0)}

29 , capacity {std::exchange(orig.capacity , 0)} {}
<]0]

31 auto vec_short = my_vec(2);

32 auto vec_short2 = std::move(vec_short);

34

2 Vector - Move Assi

Like the move
constructor, but the

destination is already

constructed

21 3}

class my_vec {

// Constructor

my_vec(int size): data_{new int[size]}, size_ {size}, capacity_{size} {}

// Copy constructor

my_vec(my_vec const&) = default;

// Copy assignment

my_vec& operator=(my_vec const&) = default;

// Move constructor

my_vec(my_vec&&) noexcept = default;

// Move assignment

my_vec& operator=(my_vec&&) noexcept = default;

// Destructor
~my_vec() = default;

int* data_;
int size_;
int capacity_;

23 my_vec& my_vec::operator=(my_vec&& orig) noexcept {

39
40 }
41

// The easiest way to write a move assignment is generally to do
// memberwise swaps, then clean up the orig object.

// Doing so may mean some redundant code, but it means you don't
// need to deal with mixed state between objects.

std: :swap(data_, orig.data_);

std::swap(size_, orig.size);

std::swap(capacity_, orig.capacity_);

// The following line may or may not be nessecary, depending on

// if you decide to add additional constraints to your moved-from object.

delete[] orig.data_
orig.data_ = nullptr;
orig.size_ = 0;
orig.capacity = 0;

return *this;

42 auto vec_short = my_vec(2);
43 auto vec_long = my_vec(9);
44 vec_long = std::move(vec_short);

gnment

35

1
2
3
4
5
6

%7 Explicitly Deleted Copy/Move

e We may not want a type to be copyable / moveable
e |f so, we can declare fn() = delete

class T {
T(const T&) = delete;
T(T&&) = delete;
T& operator=(const T&) = delete;
T& operator=(T&&) = delete;

1

37

%7 Implicitly Deleted Copy/Move

Under certain conditions, the compiler will not generate copies and moves

The implicitly defined copy constructor calls the copy constructor member-wise

= |f one of its members doesn't have a copy constructor, the compiler can't generate one for you
= Same applies for copy assignment, move constructor, and move assignment

Under certain conditions, the compiler will not automatically generate copy / move assignment /
constructors

» eg. If you have manually defined a destructor, the copy constructor isn't generated

If you define one of the rule of five, you should explictly delete, default, or define all five

» |f the default behaviour isn't sufficient for one of them, it likely isn't sufficient for others

= Explicitly doing this tells the reader of your code that you have carefully considered this

= This also means you don't need to remember all of the rules about "if | write X, then is Y generated"

39

RAII

RAIl = Resource Acquisition Is Initialization

Ny
[\

e o

In summary, today is really about emphasising RAII

» Resource = heap object
e A concept where we encapsulate resources inside objects
= Acquire the resource in the constructor
» Release the resource in the destructor
= eg. Memory, locks, files
e Every resource should be owned by either:
» Another resource (eg. smart pointer, data member)
= Named resource on the stack

= A nameless temporary variable

41

& Obiject Lifetimes

To create safe object lifetimes in C++, we always attach the lifetime of one object to that

of something else

e Named objects:
= Avariablein a function is tied to its scope
» Adata member is tied to the lifetime of the class instance
= An element in a std::vector is tied to the lifetime of the vector
e Unnamed objects:
= A heap object should be tied to the lifetime of whatever object created it
» Examples of bad programming practice
o An owning raw pointer is tied to nothing
o A C-style array is tied to nothing

43

® Feedback

[=]

Or go to the form here.

L
=i

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

