COMP6TT1
& Smart Pointers

Lecture 5.3

Author(s): Hayden Smith

(Download as PDF)

http://teaching.bitflip.com.au/6771/25T2/5.3-smart-pointers.pdf

In This Lecture

- Why? @
= Managing unnamed / heap memory can be dangerous, as there is always the chance

that the resource is not released / free'd properly. We need solutions to help with
this.

. What? &
= Smart pointers
= Unique pointer, shared pointer
= Partial construction

& Obiject Lifetimes

To create safe object lifetimes in C++, we always attach the lifetime of one object to that

of something else

e Named objects:
= Avariablein a function is tied to its scope
= Adata member is tied to the lifetime of the class instance
= An element in a std::vector is tied to the lifetime of the vector
e Unnamed objects:
= A heap object should be tied to the lifetime of whatever object created it
» Examples of bad programming practice
o An owning raw pointer is tied to nothing
o A C-style array is tied to nothing

Ny
[\

RAII

RAIl = Resource Acquisition Is Initialization

e o)

In summary, resource management was really about emphasising RAII

e Resource = heap object
e A concept where we encapsulate resources inside objects
= Acquire the resource in the constructor
» Release the resource in the destructor
= eg. Memory, locks, files
e Every resource should be owned by either:
» Another resource (eg. smart pointer, data member)
» Named resource on the stack
» A nameless temporary variable

@ Making A Pointer Safe

We could write a class to make a pointer safe.

1 // myintpointer.h

2

3 class MyIntPointer {

4
5
6
7
8

9
10
11
12
13
14
15
16
17

public:

// This is the constructor
MyIntPointer(int* value): value_{value} {}

// This is the destructor
~MyIntPointer() {
// Similar to C's free function.
delete value_;

3

int* GetValue() {
return value_

}

18 private:

19
20 };

int* value_;

1 void fn() {

2 // Similar to C's malloc

3 MyIntPointer p{new int{5}};

4 // Copy the pointer;

5 MyIntPointer q{p.GetValue()};

6 // p and q are both now destructed.
7 // What happens?

8

}

& Smart Pointers

e Smart pointers are ways of wrapping unnamed (i.e. raw pointer) heap objects in

named stack objects to that object lifetimes can be managed much more safely
e Introduced in C++11

e Usually two ways of solving problems
= unique ptr+raw pointers
» shared ptr+weak ptr

Type Shared ownership | Take ownership
std::unique ptr<T> | No Yes
raw pointers No No
std: :shared ptr<T> | Yes Yes
std: :weak ptr<T> No No

& Unique Pointer

e std: :unique_ptr<T>
= The unique pointer owns the object

= When the unique pointer is destructed, the underlying object is too
e raw pointer (observer)

= Unique pointer may have many observers
= There is an appropriate use of raw pointers (or refereces) in C++

= Once the original pointer is destructed, you must ensure you don't access the raw
pointers (no checks exist)

= Those observers do not have ownership over the pointer

Also note the use of nullptrin C++instead of NULL.

12

& Unique Pointer

1 #include <memory>
2 #include <jostream>

£

00 ~NO 01 &~

int main() {

auto upl = std::unique_ptr<int>{new int};
// auto up2 = upl; // no copy constructor
std::unique_ptr<int> up3;

// up3d = up2; // no copy assignhment

up3.reset(upl.release()); // OK
auto up4 = std::move(up3d); // OK
std::cout << upd.get() << "\n";
std::cout << *up4 << "\n'";
std::cout << *upl << "\n'";

unique.cpp

13

http://teaching.bitflip.com.au/code/6771/24T2/5.3/unique.cpp

&9 Observer Pointer

1 #include <memory>
2 #include <iostream>

3

4 int main() {

auto upl = std::unique_ptr<int>{new int{0}};
*upl = 5;

std::cout << *upl << "\n";

auto opl = upl.get();

*opl = 6;

std::cout << *opl << "\n";

upl.reset();

std::cout << *opl << "\n'";

observer.cpp

14

http://teaching.bitflip.com.au/code/6771/24T2/5.3/observer.cpp

> Removing New/Delete

We can use another function to remove the need for the new keyword. It has other
benefits that we will explore later.

1 #include <iostream>
2 #include <memory>

4 auto main() -> int {

5 // 1 - Worst - you can accidentally own the resource multiple
6 // times, or easily forget to own it.

7 // auto* silly string = new std::string{"Hi"};

8 // auto upl = std::unique_ptr<std::string>(silly_string);

9 // auto upll = std::unique_ptr<std::string>(silly_string);

11 // 2 - Not good - requires actual thinking about whether there's a leak.
12 auto up2 = std::unique_ptr<std::string>(new std::string("Hello"));

14 // 3 - Good - no thinking required.
15 auto up3 = std::make_unique<std::string>("Hello");

17 std::cout << *up2 << "\n";

18 std::cout << *up3 << "\n";

19 // std::cout << *(up3.get()) << "\n";
pAC) // std::cout << up3->size();

smart-no-new.cpp

http://teaching.bitflip.com.au/code/6771/24T2/5.3/smart-no-new.cpp

A Shared Pointer

e std: :shared ptr<T>
e Several shared pointers share ownership of the object
= Areference counted pointer
= When a shared pointer is destructed, if it is the only shared pointer left pointing at
the object, then the object is destroyed
= May also have many observers
o Just because the pointer has shared ownership doesn't mean the observers
should get ownership too
e std: :weak ptr<T>
= Weak pointers are used with shared pointers when:
o You don't want to add to the reference count
o You want to be able to check if the underlying data is still valid before using it

18

A Shared Pointer

1 #include <jiostream>

2 #include <memory>

5

4 auto main() -> int {

5 auto x = std::make_shared<int>(5);
6 auto y = std::shared_ptr<int>(x);
7
8

std::cout << "use count: " << x.use_count() << "\n";
9 std::cout << "value: " << *x << "\n'";
10 x.reset(); // Memory still exists, due to vy.
11 std::cout << "use count: " << y.use_count() << "\n";
12 std::cout << "value: " << *y << "\n'",

13 y.reset(); // Deletes the memory, since
14 // no one else owns the memory

15 std::cout << "use count: " << x.use_count() << "\n";
16 std::cout << "value: " << *y << "\n'",
17 }

shared.cpp

19

http://teaching.bitflip.com.au/code/6771/24T2/5.3/shared.cpp

Weak Pointer

1 #include <jiostream>
2 #include <memory>

3

0O NO O b~

auto main() -> int {

auto x = std::make_shared<int>(1);

auto wp = std::weak_ptr<int>(x); // x owns the memory

auto y = wp. lock();

if (y !'= nullptr) { // x and y own the memory

}

// Do something with vy
std: :cout << "Attempt 1:

1 << *y << |\n| ;

weak.cpp

20

http://teaching.bitflip.com.au/code/6771/24T2/5.3/weak.cpp

®, When To Use Which

e Unique pointer vs Shared pointer
= You almost always want a unique pointer over a hared pointer
= Use a shared pointer if either:
o An object has multiple owenrs, and you don't know which one will stay around
the longest
o You need temporary ownership (unlikely)

22

B Examples Of Smart Pointer Usage

e Linked list

e Doubly linked list
e [ree

e Graph

“* | eak Freedom

“Leak freedom in C++” poster

stategy | Naturaleamples | Cost | Rough frequency_

1. Prefer scoped lifetime by default
(locals, members)

2. Else prefer make_unique &

unique_ptr or a container, if the object
must have its own lifetime (i.e., heap) and
ownership can be unique w/o owning cycles

3. Else prefer make_shared &
shared_ptr, if the object must have its
own lifetime (i.e., heap) and shared
ownership w/o owning cycles

Local and
member objects
- directly owned

Implementations
of trees, lists

Node-based
DAGs, incl. trees
that share out
references

Zero: Tied directly to 0(80%)
another lifetime of objects

Same as new/delete &

malloc/free

Automates simple heap

use in a library 0(20%)
Same as manual of objects
reference counting (RC)

Automates shared
object use in a library

Don’t use owning raw *’s == don’t use explicit delete

Don’t create ownership cycles across modules by owning “upward” (violates layering)
Use weak ptr to break cycles

26

& Stack Unwinding

e Stack unwinding is the process of exiting the stack frames until we find an exception
handler for the function

e This calls any destructors on the way out
= Any resources not managed by destructors won't get freed up
= If an exception is thrown during stack unwinding, std::terminate is called

28

©oO~NOOOh~WNE

“* Stack Unwindin

void g() { 1 void g() { 1 void g() {
throw std::runtime_error{""}; 2 throw std::runtime_error{""}; 2 throw std::runtime_error{""};
3 3} 3}
4 4
int main() { 5 int main() { 5 int main() {
auto ptr = new int{5}; 6 auto ptr = new int{5}; 6 auto ptr = std::make_unique<int>(5);
g(); 7 90); 7 90);
// Never executed. 8 auto uni = std::unique_ptr<int>(ptr); 8 }
delete ptr; 9 }

Y\ Exceptions And Destructors

e During stack unwinding, std::terminate() will be called if an exception leaves a
destructor
e The resources may not be released properly if an exception leaves a destructor
e All exceptions that occur inside a destructor should be handled inside the destructor
e Destructors usually don't throw, and need to explicitly opt in to throwing
= STL types don't do that

30

== Partial Construction

e What happens if an exception is thrown

halfway through a constructor?

= The C++ standard: "An object that is
partially constructed or partially
destroyed will have destructors
executed for all of its fully constructed
subobjects”

» A destructor is not called for an object
that was partially constructed

= Except for an exception thrown in a
constructor that delegates (why?)

oO~NO Ol WNERE

WWNNNNMNNNNNNNRRRPRRPRRRRPR P PR
RFP® OO ~NOUNWNROOWODNOOUINWNRO® ©

32

w
w

#include <exception>

class my_int {
public:
my_int(int const 1)
(void)i_;
if (1 == 2) {
throw std::exception();

}

i {1} {

}

private:
int i_;

P

class unsafe_class {
public:
unsafe_class(int a, int b)
: a_{new my_int{a}}
, b_{new my_int{b}}
{;

~unsafe_class() {
delete a_;
delete b_;
)
private:
my_int* a_;
my_int* b_;
}i

int main() {
auto a = unsafe_class(1, 2);

}
partial-construction-bad.cpp

31

http://teaching.bitflip.com.au/code/6771/24T2/5.3/partial-construction-bad.cpp

== Partial Construction: Solution

e Option 1: Try / catch in the constructor
= Very messy, but works (if you get it right...)
= Doesn't work with initialiser lists (needs to be in
the body)
e Option 2:
= An object managing a resource should initialise
the resource last
o The resource is only initialised when the whole
object is
o Consequence: An object can only manage one
resource
o If you want to manage multiple resources,
instead manage several wrappers , which each
manage one resource

oO~NO OIS WNEBE

#include <exception>
#include <memory>

class my_int {
public:
my_int(int const 1i)
i {i} {
(void)i_;
if (14 == 2) {
throw std::exception();
3

}

private:
int i_;

¥

class safe_class {

public:
safe_class(int a, int b)
: a_(std::make_unique<my_int>(a))
, b_(std::make_unique<my_int>(b))
{3

private:
std::unique_ptr<my_int> a_;
std::unique_ptr<my_int> b_;

Jie

int main() {
auto a = safe_class(1, 2);

}

partial-construction-good.cpp

32

http://teaching.bitflip.com.au/code/6771/24T2/5.3/partial-construction-good.cpp

® Feedback

[=]

Or go to the form here.

L
=i

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

