
COMP6771

🍰 Dynamic Polymorphism
Lecture 7.1

Author(s): Hayden Smith

(Download as PDF)

1

http://teaching.bitflip.com.au/6771/25T2/7.1-dynamic-polymorphism.pdf

🎂 Key Concepts
Iheritance: ability to create new classes based on existing ones

Supported by class derivation

Polymorphism: allows objects of a subclass to be used as if they were objects of a

base class

Supported via virtual functions

Dynamic binding: run-time resolution of the appropriate function to invoke based on

the type of the object

Closely related to polymorphism

Supported via virtual functions

3

🌋OO Tenets Of C++
Don't pay for what you don't use

C++ Supports OOP

No runtime performance penalty

C++ supports generic programming with the STL and templates

No runtime performance penalty

Polymorphism is extremely powerful, and we need it in C++

Do we need polymorphism at all when using inheritance?

Answer: sometimes

But how do we do so, considering that we don't want to make anyone who

doesn't use it pay a performance penalty

One of the guiding principles of C++ is "You don't pay for what you don't use"

5

👁️‍🗨️ Inheritance In C++

class BaseClass {
 public:
 int get_int_member() { return int_member_; }
 std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int int_member_;
 std::string string_member_;
}

1
2
3
4
5
6
7
8
9

10
11

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 std::vector<int> vector_member_;
 std::unique_ptr<int> ptr_member_;
}

1
2
3
4
5
6
7
8
9

10

7

👁️‍🗨️ Inheritance In C++
To inherit off classes in C++, we use "class DerivedClass: public BaseClass"

Visibility can be one of:

public (generally use this unless you have good reason not to)

If you don't want public, you should (usually) use composition

protected

private

Visibility is the maximum visibility allowed

If you specify ": private BaseClass", then the maximum visibility is private

Any BaseClass members that were public or protected are now private

8

👁️‍🗨️ Inheritance In C++

Memory Layout

BaseClass object SubClass object

int_member_ BaseClass subobject int_member_

string_member_ string_member_

SubClass subobject vector_member_

ptr_member_

9

🔢 Code Exploration

#include <string>
#include <iostream>

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
};

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 (void) subclass_data_;
 return "SubClass";
 }

 private:
 int subclass_data_;
};

void print_class_name(BaseClass base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

code-explore.cpp

11

http://teaching.bitflip.com.au/code/6771/24T2/7.1/code-explore.cpp

🔢 Code Exploration

How many bytes is a BaseClass instance?

How many bytes is a SubClass instance?

How can the compiler allocate space for it on the stack, when it doesn't know how big it

could be?

12

🔢 Code Exploration

The answer: since we care about performance, a BaseClass can only store a BaseClass,

not a SubClass

If we try to fill that value with a SubClass, then it just fills it with the BaseClass subobject,

and drops the SubClass subobject

This is called the object slicing problem

13

🔢 Code Exploration

The solution to this is to use references/pointers (preferably references) to the baseclass

14

🔢 Code Exploration

#include <string>
#include <iostream>

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
};

class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 (void) subclass_data_;
 return "SubClass";
 }

 private:
 int subclass_data_;
};

void print_class_name(BaseClass& base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '\n';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

slicing-reference.cpp

15

http://teaching.bitflip.com.au/code/6771/24T2/7.1/slicing-reference.cpp

😶‍🌫️ More Problems

How does the compiler decide which version of get_class_name to call?

When does the compiler decide this? Compile or runtime?

How can it ensure that calling get_member doesn't have similar overhead?

class BaseClass {
 public:
 int get_member() { return member_; }
 std::string get_class_name() {
 return "BaseClass";
 };

 private:
 int member_;
};
class SubClass: public BaseClass {
 public:
 std::string get_class_name() {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

void print_class_name(BaseClass& base) {
 std::cout << base.get_class_name()
 << ' ' << base.get_member()
 << '
';
}

int main() {
 BaseClass base_class;
 SubClass subclass;
 print_class_name(base_class);
 print_class_name(subclass);
}

1
2
3
4
5
6
7
8
9

10
11
12
13

17

💊 Virtual & Override

By default, C++ will call "get_class_name()" of the BaseClass.

However, if the base class has the function marked as virtual, it will happily look toward

the derived class.

void print_stuff(const BaseClass& base) {
 std::cout << base.get_class_name() << '
';
}
int main() {
 SubClass subclass;
 print_stuff(subclass);
}

1
2
3
4
5
6
7
8

19

💊 Virtual & Override

For example:

Note the use of the override keyword to.

 virtual std::string get_class_name() {

class BaseClass {1
 public:2
 int get_member() { return member_; }3

4
 return "BaseClass"5
 };6
 7
 private:8
 int member_;9
}10

 std::string GetClassName() override {

class SubClass: public BaseClass {1
 public:2

3
 return "SubClass";4
 }5
 6
 private:7
 int subclass_data_;8
}9

20

💊 Virtual & Override
While override isn't required by the compiler, you should always use it

Override fails to compile if the function doesn't exist in the base class. This helps with:

Typos

Refactoring

Const / non-const methods

Slightly different signatures

21

💊 Virtual & Override

Let's explore some outputs wiht virtual members

#include <iostream>
#include <string>

class BaseClass {
 public:
 virtual std::string get_class_name() const {
 return "BaseClass";
 };

 virtual ~BaseClass() {
 std::cout << "Destructing base class\n";
 }
};

class SubClass: public BaseClass {
 public:
 std::string get_class_name() const override {
 return "SubClass";
 }

 ~SubClass() {
 std::cout << "Destructing subclass\n";
 }
};

void print_stuff(const BaseClass& base_class) {
 std::cout << base_class.get_class_name() << '\n';
}

int main() {
 auto subclass = static_cast<std::unique_ptr<BaseClass>>(
 std::make_unique<SubClass>());
 std::cout << subclass->get_class_name();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

virtual.cpp

22

http://teaching.bitflip.com.au/code/6771/24T2/7.1/virtual.cpp

💻 Vtables
Each class has a VTable stored in the data segment

A vtable is an array of function pointers that says which definition each virtual

function points to for that class

If the VTable for a class is non-empty, then every member of that class has an

additional data member that is a pointer to the vtable

When a virtual function is called on a reference or pointer type, then the program

actually does the following

1. Follow the vtable pointer to get to the vtable

2. Increment by an offset, which is a constant for each function

3. Follow the function pointer at vtable[offset] and call the function

24

💻 Vtables

25

✔️ Final
Specifies to the compiler "this is not virtual for any subclasses"

If the compiler has a variable of type SubClass&, it now no longer needs to look it up in

the vtable

This means static binding if you have a SubClass&, but dynamic binding for

BaseClass&

class BaseClass {
 public:
 int get_member() { return member_; }
 virtual std::string get_class_name() {
 return "BaseClass"
 };

 private:
 int member_;
}

1
2
3
4
5
6
7
8
9

10

class SubClass: public BaseClass {
 public:
 std::string get_class_name() override final {
 return "SubClass";
 }

 private:
 int subclass_data_;
}

1
2
3
4
5
6
7
8
9

27

✔️ Final
Syntax Name Meaning

virtual void fn() =

0;

pure

virtual

Inherit interface only

virtual void fn() virtual Inherit interface with optional

implementation

void fn() nonvirtual Inherit interface and mandatory

implementation

Note: nonvirtuals can be hidden by writing a function with the same name in a

subclass

DO NOT DO THIS

28

💌 Abstract Base Classes (ABCs)
Might want to deal with a base class, but the base class by itself is nonsense

What is the default way to draw a shape? How many sides by default?

A function takes in a "Clickable"

Might want some default behaviour and data, but need others

All files have a name, but are reads done over the network or from a disk

If a class has at least one "abstract" (pure virtual in C++) method, the class is abstract

and cannot be constructed

It can, however, have constructors and destructors

These provide semantics for constructing and destructing the ABC subobject of any

derived classes

30

🪽 Pure Virtual Functions
Virtual functions are good for when you have a default implementation that

subclasses may want to overwrite

Sometimes there is no default available

A pure virtual function specifies a function that a class must override in order to not be

abstract

class Shape {
 // Your derived class "Circle" may forget to write this.
 virtual void draw(Canvas&) {}

 // Fails at link time because there's no definition.
 virtual void draw(Canvas&);

 // Pure virtual function.
 virtual void draw(Canvas&) = 0;
};

1
2
3
4
5
6
7
8
9
10

32

🔨 Creating Polymorphic Objects
In a language like Java, everything is a pointer

This allows for code like on the left

Not possible in C++ due to objects being stored inline

This then leads to slicing problem

If you want to store a polymorphic object, use a pointer

// Java-style C++ here
// Don't do this.

auto base = std::vector<BaseClass>();
base.push_back(BaseClass{});
base.push_back(SubClass1{});
base.push_back(SubClass2{});

1
2
3
4
5
6
7

// Good C++ code
// But there's a potential problem here.
// (*very* hard to spot)

auto base = std::vector<std::unique_ptr<BaseClass>>();
base.push_back(std::make_unique<BaseClass>());
base.push_back(std::make_unique<Subclass1>());
base.push_back(std::make_unique<Subclass2>());

1
2
3
4
5
6
7
8

34

🗽 Inheritance And Constructors
Every subclass constructor must call a base class constructor

If none is manually called, the default constructor is used

A subclass cannot initialise fields defined in the base class

Abstract classes must have constructors

class BaseClass {
 public:
 BaseClass(int member): int_member_{member} {}

 private:
 int int_member_;
 std::string string_member_;
}

class SubClass: public BaseClass {
 public:
 SubClass(int member, std::unique_ptr<int>&& ptr): BaseClass(member), ptr_member_(std::move(ptr)) {}
 // Won't compile.
 SubClass(int member, std::unique_ptr<int>&& ptr): int_member_(member), ptr_member_(std::move(ptr)) {}

 private:
 std::vector<int> vector_member_;
 std::unique_ptr<int> ptr_member_;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

36

🥟 Destructing Polymorphic Objects
Which constructor is called?

Which destructor is called?

What could the problem be?

What would the consequences be?

How might we fix it, using the techniques we've already learnt?

// Simplification of previous slides code.

auto base = std::make_unique<BaseClass>();
auto subclass = std::make_unique<Subclass>();

1
2
3
4

38

🥟 Destructing Polymorphic Objects
Whenever you write a class intended to be inherited from,

Remember: When you declare a destructor, the move constructor and assignment are

not synthesized

Forgetting this can be a hard bug to spot

always make your

destructor virtual

class BaseClass {
 BaseClass(BaseClass&&) = default;
 BaseClass& operator=(BaseClass&&) = default;
 virtual ~BaseClass() = default;
}

1
2
3
4
5

39

http://localhost:55664/6771/25T2/stackoverflow.com/questions/10024796/c-virtual-functions-but-no-virtual-destructors
http://localhost:55664/6771/25T2/stackoverflow.com/questions/10024796/c-virtual-functions-but-no-virtual-destructors

💡 Static & Dynamic Types
Static type is the type it is declared as

Dynamic type is the type of the object itself

Static means compile-time, and dynamic means runtime

Due to object slicing, an object that is neither reference or pointer always has the

same static and dynamic type

int main() {
 auto base_class = BaseClass();
 auto subclass = SubClass();
 auto sub_copy = subclass;
 // The following could all be replaced with pointers
 // and have the same effect.
 const BaseClass& base_to_base{base_class};
 // Another reason to use auto - you can't accidentally do this.
 const BaseClass& base_to_sub{subclass};
 // Fails to compile
 const SubClass& sub_to_base{base_class};
 const SubClass& sub_to_sub{subclass};
 // Fails to compile (even though it refers to at a sub);
 const SubClass& sub_to_base_to_sub{base_to_sub};
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

41

💡 Static & Dynamic Types
Static binding: Decide which function to call at compile time (based on static type)

Dynamic binding: Decide which function to call at runtime (based on dynamic type)

C++

Statically typed (types are calculated at compile time)

Static binding for non-virtual functions

Dynamic binding for virtual functions

Java

Statically typed

Dynamic binding

42

💡 Static & Dynamic Types

Up-casting

Casting from a derived class to a base class is called up-casting

This cast is always safe

All dogs are animals

Because the cast is always safe, C++ allows this as an implicit cast

One of the reasons to use auto is that it avoids implicit casts

auto dog = Dog();
Animal& animal = dog;
Animal* animal = &dog;

1
2
3

43

💡 Static & Dynamic Types

Down-casting

Casting from a base class to a derived class is called down-casting

This cast is not safe

Not all animals are dogs

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with references.
// Neither of these compile.
// Why not?
Dog& dog_ref{animal_dog};
Dog& dog_ref{animal_cat};

1
2
3
4
5
6
7
8
9
10

44

💡 Static & Dynamic Types

How to down cast

The compiler doesn't know if an Animal happens to be a Dog

If you know it is, you can use static_cast

Otherwise, you can use dynamic_cast

Returns null pointer for pointer types if it doesn't match

Throws exceptions for reference types if it doesn't match

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with references.
Dog& dog_ref{static_cast<Dog&>(animal_dog)};
Dog& dog_ref{dynamic_cast<Dog&>(animal_dog)};
// Undefined behaviour (incorrect static cast).
Dog& dog_ref{static_cast<Dog&>(animal_cat)};
// Throws exception
Dog& dog_ref{dynamic_cast<Dog&>(animal_cat)};

1
2
3
4
5
6
7
8
9

10
11
12

auto dog = Dog();
auto cat = Cat();
Animal& animal_dog{dog};
Animal& animal_cat{cat};

// Attempt to down-cast with pointers.
Dog* dog_ref{static_cast<Dog*>(&animal_dog)};
Dog* dog_ref{dynamic_cast<Dog*>(&animal_dog)};
// Undefined behaviour (incorrect static cast).
Dog* dog_ref{static_cast<Dog*>(&animal_cat)};
// returns null pointer
Dog* dog_ref{dynamic_cast<Dog*>(&animal_cat)};

1
2
3
4
5
6
7
8
9

10
11
12

45

👰 Covariants

If a function overrides a base, which type can it return?

If a base specifies that it returns a LandAnimal, a derived also needs to return a

LandAnimal

Every possible return type for the derived must be a valid return type for the base

Read more about covariance and contravariance

class Base {
 virtual LandAnimal& get_favorite_animal();
};

class Derived: public Base {
 // Fails to compile: Not all animals are land animals.
 Animal& get_favorite_animal() override;
 // Compiles: All land animals are land animals.
 LandAnimal& get_favorite_animal() override;
 // Compiles: All dogs are land animals.
 Dog& get_favorite_animal() override;
};

1
2
3
4
5
6
7
8
9
10
11
12

47

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)

👰 Contravariants
If a function overrides a base, which types can it take in?

If a base specifies that it takes in a LandAnimal, a LandAnimal must always be valid

input in the derived

Every possible parameter to the base must be a possible parameter for the derived

class Base {
 virtual void use_animal(LandAnimal&);
};

class Derived: public Base {
 // Compiles: All land animals are valid input (animals).
 void use_animal(Animal&) override;
 // Compiles: All land animals are valid input (land animals).
 void use_animal(LandAnimal&) override;
 // Fails to compile: Not All land animals are valid input (dogs).
 void use_animal(Dog&) override;
};

1
2
3
4
5
6
7
8
9
10
11
12

48

🐕‍🦺 Default Arguments And Virtuals
Default arguments are determined at compile time for efficiency's sake

Hence, default arguments need to use the static type of the function

Avoid default arguments when overriding virtual functions

#include <iostream>

class Base {
public:
 virtual ~Base() = default;
 virtual void print_num(int i = 1) {
 std::cout << "Base " << i << '\n';
 }
};

class Derived: public Base {
public:
 void print_num(int i = 2) override {
 std::cout << "Derived " << i << '\n';
 }
};

int main() {
 Derived derived;
 Base* base = &derived;
 derived.print_num(); // Prints "Derived 2"
 base->print_num(); // Prints "Derived 1"
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

default.cpp
50

http://teaching.bitflip.com.au/code/6771/24T2/7.1/default.cpp

🐈 Construction Of Derived Classes
Base classes are always constructed before the derived class is constructed

The base class ctor never depends on the members of the derived class

The derived class ctor may be dependent on the members of the base class

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

Dog d;

// Dog() calls LandAnimal()
 // LandAnimal() calls Animal()
 // Animal members constructed using initialiser list
 // Animal constructor body runs
 // LandAnimal members constructed using initialiser list
 // LandAnimal constructor body runs
// Dog members constructed using initialiser list
// Dog constructor body runs

1
2
3
4
5
6
7
8
9
10
11
12
13
14

52

🐈 Virtuals In Constructors

If a class is not fully constructed, cannot perform dynamic binding

class Animal {...};
class LandAnimal: public Animal {
 LandAnimal() {
 Run();
 }

 virtual void Run() {
 std::cout << "Land animal running
";
 }
};
class Dog: public LandAnimals {
 void Run() override {
 std::cout << "Dog running
";
 }
};

// When the LandAnimal constructor is being called,
// the Dog part of the object has not been constructed yet.
// C++ chooses to not allow dynamic binding in constructors
// because Dog::Run() might depend upon Dog's members.
Dog d;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

53

🐈 Destruction Of Derived Classes

Easy to remember order: Always opposite to construction order

class Animal {...}
class LandAnimal: public Animal {...}
class Dog: public LandAnimals {...}

auto d = Dog();

// ~Dog() destructor body runs
 // Dog members destructed in reverse order of declaration
 // ~LandAnimal() destructor body runs
 // LandAnimal members destructed in reverse order of declaration
 // ~Animal() destructor body runs
// Animal members destructed in reverse order of declaration.

1
2
3
4
5
6
7
8
9
10
11
12

54

🐈 Virtuals In Destructors
If a class is partially destructed, cannot perform dynamic binding

Unrelated to the destructor itself being virtual

class Animal {...};
class LandAnimal: public Animal {
 virtual ~LandAnimal() {
 Run();
 }

 virtual void Run() {
 std::cout << "Land animal running
";
 }
};
class Dog: public LandAnimals {
 void Run() override {
 std::cout << "Dog running
";
 }
};

// When the LandAnimal constructor is being called,
// the Dog part of the object has already been destroyed.
// C++ chooses to not allow dynamic binding in destructors
// because Dog::Run() might depend upon Dog's members.
auto d = Dog();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

55

👂🏼Feedback

Or go to the .form here

56

https://docs.google.com/forms/d/e/1FAIpQLScTvTvH1Hm64hLefcMoZrhRzuyxcnZUw6ekOjHTF23cD8eweg/viewform

